P=(326,000−75,000)∗(1+0.09/12)360−10.09/12∗(1+0.09/12)360=2019.6
P-payment
A) (1+0.09/2)2=(1+i/12)12
i=0.0884
i=0.0884=8.84%
The interest rate J12 which equivalent J2 equals 8.84%
B) 0=((S50∗q51−P)∗q52−P)....∗q360−P
0=S50∗q310−P∗q309−....P∗q−P
0=S50∗q310−P∗(q309+q308∗...q+1)
S50∗q310=P∗1−q1−q310
S50=P∗1−q1−q310/q310
qn- certain year rate
S50=P∗1−q1−qn/qn
S50-sum of loan after 50 payments
P-payment
q=1.0075 (multiplier = 1+i; i=9%/12)
n- number of payments that are not made (310)
S50=2019.6∗1−1.00751−1.0075310/1.0075310=242,719.45
P′=242,719.45∗(1+0.09/2)310/6−10.09/2∗(1+0.09/2)310/6=5,684.01
P'-value of new payments
C) Payments are made every month throughout the 30 years.
n=30∗12=360
n-number full payments
0=((S50∗q359−P)∗q360−P
(S358∗1.0075−2019.6)∗1.0075−2019.6=0
S358=3994.21
S358-sum remaining after 358 payments
Pl=3994.21∗1.00752=4054.35
PL-last payment (the final concluding smaller payment one period later)
Comments