"P=(326,000\u221275,000)\u2217 \\frac{0.09\/12\u2217(1+0.09\/12)^{360}}{(1+0.09\/12) ^{360}\u22121}=2019.6"
P-payment
A) "(1+0.09\/2)^2\n\n=(1+i\/12)^{12}"
"i=0.0884"
i=0.0884=8.84%
The interest rate J12 which equivalent J2Â equals 8.84%
B) "0=((S50*q_{51}-P)*q_{52}-P)....*q_{360}-P"
"0=S50*q^{310}-P*q^{309}-....P*q-P"
"0=S50*q^{310}-P*(q^{309}+q^{308}*...q+1)"
"S50*q^{310}=P*\\frac{1-q^{310}}{1-q}"
"S50=P*\\frac{1-q^{310}}{1-q}\/q^{310}"
"q_n"- certain year rate
"S50=P*\\frac{1-q^n}{1-q}\/q^n"
S50-sum of loan after 50 payments
P-payment
q=1.0075 (multiplier = 1+i; i=9%/12)
n- number of payments that are not made (310)
"S50=2019.6*\\frac{1-1.0075^{310}}{1-1.0075}\/1.0075^{310}=242,719.45"
"P'=242,719.45*\\frac{0.09\/2*(1+0.09\/2)^{310\/6}}{(1+0.09\/2)^{310\/6}-1}=5,684.01"
P'-value of new payments
C) Payments are made every month throughout the 30 years.
"n=30*12=360"
n-number full payments
"0=((S50*q_{359}-P)*q_{360}-P"
"(S358*1.0075-2019.6)*1.0075-2019.6=0"
"S358=3994.21"
S358-sum remaining after 358 payments
"Pl=3994.21*1.0075^2=4054.35"
PL-last payment (the final concluding smaller payment one period later)
Comments
Leave a comment