1. Evaluate each of these expressions.
a) 1 1000 ∧ (0 1011 ∨ 1 1011)
b) (0 1111 ∧ 1 0101) ∨ 0 1000
c) (0 1010 ⊕ 1 1011) ⊕ 0 1000
d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011)
"\u2227" is a logical "and": "1\u22271=1,\\: 1\u22270=0,\\: 0\u22271=0,\\: 0\u22270=0."
"\u2228" is a logical "or": "1\u22281=1, \\:1\u22280=1,\\: 0\u22281=1, \\:0\u22280=0."
"\u2295" is a logical "xor": "1\u22951=0,\\: 1\u22950=1,\\: 0\u22951=1,\\: 0\u22950=0."
So we have:
a) "1 1000 \u2227 (0 1011 \u2228 1 1011)=11000\\land" 11011=11000
b) "(0 1111 \u2227 1 0101) \u2228 0 1000=00101 \u2228 0 1000=01101"
c) "(0 1010 \u2295 1 1011) \u2295 0 1000=10001\u2295 0 1000=11001"
d) "(1 1011 \u2228 0 1010) \u2227 (1 0001 \u2228 1 1011) =11011\u222711011=11011"
Answer: a) 11000 b) 01101 c) 11001 d) 11011
Comments
Leave a comment