Answer to Question #349473 in Discrete Mathematics for mhist

Question #349473

1.Show that each of these conditional statements is a tautology by using truth tables.

a) (p∧q)→ p

b) p → (p∨q)

c) ¬p → (p → q)

d) (p∧q)→ (p → q)

e) ¬(p → q)→ p

f) ¬(p → q)→¬q


2.Refer to 1, Show that each of these conditional statements is a tautology by using Propositional Logic


1
Expert's answer
2022-06-13T10:22:27-0400

1.

a) (p∧q)→ p




b) p → (p∨q)




c) ¬p → (p → q)




d) (p∧q)→ (p → q)




e) ¬(p → q)→ p




f) ¬(p → q)→¬q






2.

a) "(p\\wedge q)\\to p=\\neg(p\\wedge q)\\vee p=(\\neg p\\vee \\neg q)\\vee p=p\\vee \\neg p \\vee \\neg q=1\\vee \\neg q=1"


b) "p\\to (p\\vee q) = \\neg p \\vee(p\\vee q)=\\neg p\\vee p\\vee q=1\\vee q=1"


c) "\\neg p\\to(p\\to q) =\\neg\\neg p \\vee (p\\to q)= p\\vee (\\neg p \\vee q)=p\\vee\\neg p\\vee q=1\\vee q=1"


d) "(p\\wedge q)\\to(p\\to q)=\\neg(p\\wedge q)\\vee(p\\to q)=(\\neg p\\vee \\neg q)\\vee(\\neg p\\vee q)="

"=\\neg p\\vee \\neg q \\vee \\neg p\\vee q = \\neg p \\vee \\neg q\\vee q = \\neg p \\vee 1=1"


e) "\\neg(p\\to q)\\to p =\\neg\\neg(p\\to q)\\vee p=(p\\to q)\\vee p=\\neg p\\vee q\\vee p= 1 \\vee q=1"


f) "\\neg(p\\to q)\\to\\neg q =\\neg\\neg(p\\to q)\\vee\\neg q=(p\\to q)\\vee \\neg q=\\neg p\\vee q\\vee\\neg q=\\neg p\\vee 1=1"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS