1.Show that each of these conditional statements is a tautology by using truth tables.
a) (p∧q)→ p
b) p → (p∨q)
c) ¬p → (p → q)
d) (p∧q)→ (p → q)
e) ¬(p → q)→ p
f) ¬(p → q)→¬q
2.Refer to 1, Show that each of these conditional statements is a tautology by using Propositional Logic
1.
a) (p∧q)→ p
b) p → (p∨q)
c) ¬p → (p → q)
d) (p∧q)→ (p → q)
e) ¬(p → q)→ p
f) ¬(p → q)→¬q
2.
a) "(p\\wedge q)\\to p=\\neg(p\\wedge q)\\vee p=(\\neg p\\vee \\neg q)\\vee p=p\\vee \\neg p \\vee \\neg q=1\\vee \\neg q=1"
b) "p\\to (p\\vee q) = \\neg p \\vee(p\\vee q)=\\neg p\\vee p\\vee q=1\\vee q=1"
c) "\\neg p\\to(p\\to q) =\\neg\\neg p \\vee (p\\to q)= p\\vee (\\neg p \\vee q)=p\\vee\\neg p\\vee q=1\\vee q=1"
d) "(p\\wedge q)\\to(p\\to q)=\\neg(p\\wedge q)\\vee(p\\to q)=(\\neg p\\vee \\neg q)\\vee(\\neg p\\vee q)="
"=\\neg p\\vee \\neg q \\vee \\neg p\\vee q = \\neg p \\vee \\neg q\\vee q = \\neg p \\vee 1=1"
e) "\\neg(p\\to q)\\to p =\\neg\\neg(p\\to q)\\vee p=(p\\to q)\\vee p=\\neg p\\vee q\\vee p= 1 \\vee q=1"
f) "\\neg(p\\to q)\\to\\neg q =\\neg\\neg(p\\to q)\\vee\\neg q=(p\\to q)\\vee \\neg q=\\neg p\\vee q\\vee\\neg q=\\neg p\\vee 1=1"
Comments
Leave a comment