Question #347047

Show that (~𝒑∨𝒒)∧(𝒑∧~𝒒) is a contradiction



1
Expert's answer
2022-06-01T17:53:27-0400

(p˜q)(pq˜)=(p˜pq˜)(qpq˜)=((p˜p)q˜)((qq˜)p)=(0q˜)(0p)=00=0\left( {\~p \vee q} \right) \wedge \left( {p \wedge \~q} \right) = \left( {\~p \wedge p \wedge \~q} \right) \vee \left( {q \wedge p \wedge \~q} \right) = \left( {\left( {\~p \wedge p} \right) \wedge \~q} \right) \vee \left( {\left( {q \wedge \~q} \right) \wedge p} \right) = \left( {0 \wedge \~q} \right) \vee \left( {0 \wedge p} \right) = 0 \vee 0 = 0

Q.E.D.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS