Show that (~πβ¨π)β§(πβ§~π) is a contradiction
"\\left( {\\~p \\vee q} \\right) \\wedge \\left( {p \\wedge \\~q} \\right) = \\left( {\\~p \\wedge p \\wedge \\~q} \\right) \\vee \\left( {q \\wedge p \\wedge \\~q} \\right) = \\left( {\\left( {\\~p \\wedge p} \\right) \\wedge \\~q} \\right) \\vee \\left( {\\left( {q \\wedge \\~q} \\right) \\wedge p} \\right) = \\left( {0 \\wedge \\~q} \\right) \\vee \\left( {0 \\wedge p} \\right) = 0 \\vee 0 = 0"
Q.E.D.
Comments
Leave a comment