Show that (~𝒑∨𝒒)∧(𝒑∧~𝒒) is a contradiction.
(∼p∨q)∧(p∧∼q)(\sim p\lor q)\land (p\land \sim q)(∼p∨q)∧(p∧∼q)
(∼p∨q)∧p∧∼q(\sim p\lor q)\land p\land \sim q(∼p∨q)∧p∧∼q , associative law
((∼p∧p)∨(q∧p))∧∼q\big((\sim p\land p)\lor(q\land p)\big)\land \sim q((∼p∧p)∨(q∧p))∧∼q , distributive law
(F∨(q∧p))∧∼q(F\lor (q\land p))\land \sim q(F∨(q∧p))∧∼q , negation law
(q∧p)∧∼q(q\land p)\land \sim q(q∧p)∧∼q , identity law
(q∧∼q)∧p(q\land \sim q)\land p(q∧∼q)∧p , associative law
F∧pF\land pF∧p , negation law
FFF , domination law
It is a contradiction
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments