Show that (~πβ¨π)β§(πβ§~π) is a contradiction.
"(\\sim p\\lor q)\\land (p\\land \\sim q)"
"(\\sim p\\lor q)\\land p\\land \\sim q" , associative law
"\\big((\\sim p\\land p)\\lor(q\\land p)\\big)\\land \\sim q" , distributive law
"(F\\lor (q\\land p))\\land \\sim q" , negation law
"(q\\land p)\\land \\sim q" , identity law
"(q\\land \\sim q)\\land p" , associative law
"F\\land p" , negation law
"F" , domination law
It is a contradiction
Comments
Leave a comment