•Determine whether (p ⇔ q) and (¬p ∨ q) ∧ (¬q ∨ p) are logically equivalent.
•Determine whether p ∧ (p ⇔ q) ∧ ¬q is a tautology, contradiction, neither.
1) "(p\\Leftrightarrow q)" and "(\\neg p\\lor q)\\land (\\neg q\\lor p)" are logically equivalent.
"p\\Leftrightarrow q"
"(p\\rightarrow q)\\land (q\\rightarrow p)"
"(\\neg p\\lor q)\\land (\\neg q\\lor p)"
2) "p\\land (p\\Leftrightarrow q)\\land \\neg q" is a contradiction.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n p & q & p\\Leftrightarrow q&\\neg q&p\\land (p\\Leftrightarrow q)\\land \\neg q \\\\ \\hline\n T & T & T&F&F\n \\\\ \\hdashline T & F & F&T&F\n\\\\ \\hdashline F&T&F&F&F\n\\\\ \\hdashline F&F&T&T&F\n\\end{array}"
Comments
Leave a comment