•Determine whether (p ⇔ q) and (¬p ∨ q) ∧ (¬q ∨ p) are logically equivalent.
•Determine whether p ∧ (p ⇔ q) ∧ ¬q is a tautology, contradiction, neither.
1) (p⇔q)(p\Leftrightarrow q)(p⇔q) and (¬p∨q)∧(¬q∨p)(\neg p\lor q)\land (\neg q\lor p)(¬p∨q)∧(¬q∨p) are logically equivalent.
p⇔qp\Leftrightarrow qp⇔q
(p→q)∧(q→p)(p\rightarrow q)\land (q\rightarrow p)(p→q)∧(q→p)
(¬p∨q)∧(¬q∨p)(\neg p\lor q)\land (\neg q\lor p)(¬p∨q)∧(¬q∨p)
2) p∧(p⇔q)∧¬qp\land (p\Leftrightarrow q)\land \neg qp∧(p⇔q)∧¬q is a contradiction.
pqp⇔q¬qp∧(p⇔q)∧¬qTTTFFTFFTFFTFFFFFTTF\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} p & q & p\Leftrightarrow q&\neg q&p\land (p\Leftrightarrow q)\land \neg q \\ \hline T & T & T&F&F \\ \hdashline T & F & F&T&F \\ \hdashline F&T&F&F&F \\ \hdashline F&F&T&T&F \end{array}pTTFFqTFTFp⇔qTFFT¬qFTFTp∧(p⇔q)∧¬qFFFF
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments