Question #336143

1.   The sequence {Un} is defined by the first term u1=-2 and the recurrent relation : Un+1=Un/4 +3

a.   Evaluate U2,U3,U4

b.    Consider  the sequence Vn such that Vn=Un+1-Un for n>=2

c.    Prove that {Vn} is a G.P 

d.   Express Vn  and Un  in terms of n.

e.     Evaluate the limits of  Un and Vn  

f.    Is Un an increasing  or decreasing sequence ? 


1
Expert's answer
2022-05-02T15:17:35-0400

a.

u1=2,u_1=-2,

u2=2/4+3=52,u_2=-2/4+3=\dfrac{5}{2},

u3=(52)/4+3=298,u_3=(\dfrac{5}{2})/4+3=\dfrac{29}{8},

u4=(298)/4+3=12532u_4=(\dfrac{29}{8})/4+3=\dfrac{125}{32}

b.


vn=un+1un,n2v_n=u_{n+1}-u_n, n\ge2

vn=un/4+3un,n2v_n=u_n/4+3-u_n, n\ge2

vn=33un/4,n2v_n=3-3u_n/4, n\ge2

c.

vn+1=33un+1/4=33(un/4+3)/4=v_{n+1}=3-3u_{n+1}/4=3-3(u_n/4 +3)/4=

=(33un/4)/4=vn/4,n2=(3-3u_n/4)/4=v_n/4, n\ge2

{vn}\{v_n\} is a G.P 

v2=98,q=14v_2=\dfrac{9}{8}, q=\dfrac{1}{4}


d.


vn=98(14)n2,n2v_n=\dfrac{9}{8}(\dfrac{1}{4})^{n-2}, n\ge2

un=44vn3,n2u_n=4-\dfrac{4v_n}{3}, n\ge2

un=432(14)n2,n2u_n=4-\dfrac{3}{2}(\dfrac{1}{4})^{n-2}, n\ge2

u1=2u_1=-2

e.


limnun=limn(432(14)n2)=4\lim\limits_{n\to\infin}u_n=\lim\limits_{n\to\infin}(4-\dfrac{3}{2}(\dfrac{1}{4})^{n-2})=4

limnvn=limn(98(14)n2)=0\lim\limits_{n\to\infin}v_n=\lim\limits_{n\to\infin}(\dfrac{9}{8}(\dfrac{1}{4})^{n-2})=0

f.

{un}\{u_n\} is increasing sequence.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS