1. The sequence {Un} is defined by the first term u1=-2 and the recurrent relation : Un+1=Un/4 +3
a. Evaluate U2,U3,U4
b. Consider the sequence Vn such that Vn=Un+1-Un for n>=2
c. Prove that {Vn} is a G.P
d. Express Vn and Un in terms of n.
e. Evaluate the limits of Un and Vn
f. Is Un an increasing or decreasing sequence ?
a.
"u_1=-2,""u_2=-2\/4+3=\\dfrac{5}{2},"
"u_3=(\\dfrac{5}{2})\/4+3=\\dfrac{29}{8},"
"u_4=(\\dfrac{29}{8})\/4+3=\\dfrac{125}{32}"
b.
"v_n=u_n\/4+3-u_n, n\\ge2"
"v_n=3-3u_n\/4, n\\ge2"
c.
"v_{n+1}=3-3u_{n+1}\/4=3-3(u_n\/4 +3)\/4=""=(3-3u_n\/4)\/4=v_n\/4, n\\ge2"
"\\{v_n\\}" is a G.P
"v_2=\\dfrac{9}{8}, q=\\dfrac{1}{4}"
d.
"u_n=4-\\dfrac{4v_n}{3}, n\\ge2"
"u_n=4-\\dfrac{3}{2}(\\dfrac{1}{4})^{n-2}, n\\ge2"
"u_1=-2"
e.
"\\lim\\limits_{n\\to\\infin}v_n=\\lim\\limits_{n\\to\\infin}(\\dfrac{9}{8}(\\dfrac{1}{4})^{n-2})=0"
f.
"\\{u_n\\}" is increasing sequence.
Comments
Leave a comment