Question #329220

1.5 Solve the equation below using Inverse method (10 marks)

[13000.510.0501]\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0.5 & 1\\ 0.05 & 0 & 1\\ \end{bmatrix} [xyz]\begin{bmatrix} x \\ y\\ z\\ \end{bmatrix} =[413]\begin{bmatrix} 4 \\ 1\\ 3\\ \end{bmatrix}


1
Expert's answer
2022-04-16T04:14:05-0400

A=[13000.510.0501],X=[xyz],B=[413].A=\begin{bmatrix} 1 & 3 & 0\\ 0 & 0.5 & 1\\ 0.05 & 0 & 1 \end{bmatrix},X=\begin{bmatrix} x \\ y \\ z \end{bmatrix}, B=\begin{bmatrix} 4 \\ 1\\ 3 \end{bmatrix}.

Matrix 𝑋 satisfying the equation 𝐴𝑋=𝐵

 is given by X=A1B.X=A^{-1} B.

Let us begin by finding the inverse of the 3×3 matrix .

detA=a11A11a12A12+a13A13=\text{det} A=a_{11}|A_{11}|-a_{12}|A_{12}|+a_{13}|A_{13}|=

=10.51013010.051+000.50.050==1\cdot\begin{vmatrix} 0.5& 1\\0&1\end{vmatrix}-3\cdot\begin{vmatrix} 0& 1\\0.05&1\end{vmatrix}+0\cdot\begin{vmatrix} 0& 0.5\\0.05&0\end{vmatrix}=

=1(0.5110)3(0110.05)+0=0.65;=1\cdot(0.5\cdot1-1\cdot0)-3\cdot(0\cdot1-1\cdot0.05)+0=0.65;


+A11=+0.5101=0.5110=0.5;+|A_{11 } |=+\begin{vmatrix}0.5 & 1 \\0 & 1\end{vmatrix}=0.5\cdot1-1\cdot0=0.5;


A12=010.051=(0110.05)=0.05;-|A_{12} |=-\begin{vmatrix}0 & 1 \\0.05& 1\end{vmatrix}=-(0\cdot1-1\cdot0.05)=0.05;


+A13=+00.50.050=0.025; A21=3001=3;+|A_{13} |=+\begin{vmatrix}0 & 0.5\\0.05 & 0\end{vmatrix}=-0.025;\\ \ \\ -|A_{21} |=-\begin{vmatrix}3 & 0 \\0& 1\end{vmatrix}=-3;\\

+A22=+100.051=1; A23=130.050=0.15;+|A_{22} |=+\begin{vmatrix}1& 0\\0.05 & 1\end{vmatrix}=1;\\ \ \\ -|A_{23} |=-\begin{vmatrix}1 & 3 \\0.05& 0\end{vmatrix}=0.15;


+A31=+3001=3; A32=1001=1; +A33=+1300.5=0.5;+|A_{31} |=+\begin{vmatrix}3 & 0\\0 & 1\end{vmatrix}=3;\\ \ \\ -|A_{32} |=-\begin{vmatrix}1 & 0 \\0& 1\end{vmatrix}=-1;\\ \ \\ +|A_{33} |=+\begin{vmatrix}1 & 3\\0 & 0.5\end{vmatrix}=0.5;


A1=10.65[0.5330.05110.0250.150.5];A^{-1} =\cfrac{1}{0.65}\cdot\begin{bmatrix} 0.5 & - 3 & 3\\0.05 & 1&-1\\-0.025&0.15&0.5\end{bmatrix};


[xyz]=10.65[0.5330.05110.0250.150.5][413]=\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\cfrac{1}{0.65}\cdot\begin{bmatrix} 0.5 & - 3 & 3\\0.05 & 1&-1\\-0.025&0.15&0.5\end{bmatrix}\cdot\begin{bmatrix} 4\\ 1\\ 3 \end{bmatrix}=

=10.65[0.5431+330.054+11130.0254+0.151+0.53]==\cfrac{1} {0.65} \cdot\begin{bmatrix} 0.5\cdot4-3\cdot1+3\cdot3\\ 0.05\cdot4+1\cdot1-1\cdot3\\ -0.025\cdot4+0.15\cdot1+0.5\cdot3 \end{bmatrix}=

=10.65[81.81.55]=[12.312.772.38].=\cfrac{1} {0.65} \cdot\begin{bmatrix} 8\\ - 1.8\\ 1.55 \end{bmatrix}=\begin{bmatrix} 12.31\\ - 2.77\\ 2.38 \end{bmatrix}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS