A=⎣⎡100.0530.50011⎦⎤,X=⎣⎡xyz⎦⎤,B=⎣⎡413⎦⎤.
Matrix 𝑋 satisfying the equation 𝐴𝑋=𝐵
is given by X=A−1B.
Let us begin by finding the inverse of the 3×3 matrix .
detA=a11∣A11∣−a12∣A12∣+a13∣A13∣=
=1⋅∣∣0.5011∣∣−3⋅∣∣00.0511∣∣+0⋅∣∣00.050.50∣∣=
=1⋅(0.5⋅1−1⋅0)−3⋅(0⋅1−1⋅0.05)+0=0.65;
+∣A11∣=+∣∣0.5011∣∣=0.5⋅1−1⋅0=0.5;
−∣A12∣=−∣∣00.0511∣∣=−(0⋅1−1⋅0.05)=0.05;
+∣A13∣=+∣∣00.050.50∣∣=−0.025; −∣A21∣=−∣∣3001∣∣=−3;
+∣A22∣=+∣∣10.0501∣∣=1; −∣A23∣=−∣∣10.0530∣∣=0.15;
+∣A31∣=+∣∣3001∣∣=3; −∣A32∣=−∣∣1001∣∣=−1; +∣A33∣=+∣∣1030.5∣∣=0.5;
A−1=0.651⋅⎣⎡0.50.05−0.025−310.153−10.5⎦⎤;
⎣⎡xyz⎦⎤=0.651⋅⎣⎡0.50.05−0.025−310.153−10.5⎦⎤⋅⎣⎡413⎦⎤=
=0.651⋅⎣⎡0.5⋅4−3⋅1+3⋅30.05⋅4+1⋅1−1⋅3−0.025⋅4+0.15⋅1+0.5⋅3⎦⎤=
=0.651⋅⎣⎡8−1.81.55⎦⎤=⎣⎡12.31−2.772.38⎦⎤.
Comments