A = [ 1 3 0 0 0.5 1 0.05 0 1 ] , X = [ x y z ] , B = [ 4 1 3 ] . A=\begin{bmatrix}
1 & 3 & 0\\
0 & 0.5 & 1\\
0.05 & 0 & 1
\end{bmatrix},X=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix},
B=\begin{bmatrix}
4 \\
1\\
3
\end{bmatrix}. A = ⎣ ⎡ 1 0 0.05 3 0.5 0 0 1 1 ⎦ ⎤ , X = ⎣ ⎡ x y z ⎦ ⎤ , B = ⎣ ⎡ 4 1 3 ⎦ ⎤ .
Matrix 𝑋 satisfying the equation 𝐴𝑋=𝐵
is given by X = A − 1 B . X=A^{-1} B. X = A − 1 B .
Let us begin by finding the inverse of the 3×3 matrix .
det A = a 11 ∣ A 11 ∣ − a 12 ∣ A 12 ∣ + a 13 ∣ A 13 ∣ = \text{det} A=a_{11}|A_{11}|-a_{12}|A_{12}|+a_{13}|A_{13}|= det A = a 11 ∣ A 11 ∣ − a 12 ∣ A 12 ∣ + a 13 ∣ A 13 ∣ =
= 1 ⋅ ∣ 0.5 1 0 1 ∣ − 3 ⋅ ∣ 0 1 0.05 1 ∣ + 0 ⋅ ∣ 0 0.5 0.05 0 ∣ = =1\cdot\begin{vmatrix} 0.5& 1\\0&1\end{vmatrix}-3\cdot\begin{vmatrix} 0& 1\\0.05&1\end{vmatrix}+0\cdot\begin{vmatrix} 0& 0.5\\0.05&0\end{vmatrix}= = 1 ⋅ ∣ ∣ 0.5 0 1 1 ∣ ∣ − 3 ⋅ ∣ ∣ 0 0.05 1 1 ∣ ∣ + 0 ⋅ ∣ ∣ 0 0.05 0.5 0 ∣ ∣ =
= 1 ⋅ ( 0.5 ⋅ 1 − 1 ⋅ 0 ) − 3 ⋅ ( 0 ⋅ 1 − 1 ⋅ 0.05 ) + 0 = 0.65 ; =1\cdot(0.5\cdot1-1\cdot0)-3\cdot(0\cdot1-1\cdot0.05)+0=0.65; = 1 ⋅ ( 0.5 ⋅ 1 − 1 ⋅ 0 ) − 3 ⋅ ( 0 ⋅ 1 − 1 ⋅ 0.05 ) + 0 = 0.65 ;
+ ∣ A 11 ∣ = + ∣ 0.5 1 0 1 ∣ = 0.5 ⋅ 1 − 1 ⋅ 0 = 0.5 ; +|A_{11 } |=+\begin{vmatrix}0.5 & 1 \\0 & 1\end{vmatrix}=0.5\cdot1-1\cdot0=0.5; + ∣ A 11 ∣ = + ∣ ∣ 0.5 0 1 1 ∣ ∣ = 0.5 ⋅ 1 − 1 ⋅ 0 = 0.5 ;
− ∣ A 12 ∣ = − ∣ 0 1 0.05 1 ∣ = − ( 0 ⋅ 1 − 1 ⋅ 0.05 ) = 0.05 ; -|A_{12} |=-\begin{vmatrix}0 & 1 \\0.05& 1\end{vmatrix}=-(0\cdot1-1\cdot0.05)=0.05; − ∣ A 12 ∣ = − ∣ ∣ 0 0.05 1 1 ∣ ∣ = − ( 0 ⋅ 1 − 1 ⋅ 0.05 ) = 0.05 ;
+ ∣ A 13 ∣ = + ∣ 0 0.5 0.05 0 ∣ = − 0.025 ; − ∣ A 21 ∣ = − ∣ 3 0 0 1 ∣ = − 3 ; +|A_{13} |=+\begin{vmatrix}0 & 0.5\\0.05 & 0\end{vmatrix}=-0.025;\\ \ \\
-|A_{21} |=-\begin{vmatrix}3 & 0 \\0& 1\end{vmatrix}=-3;\\ + ∣ A 13 ∣ = + ∣ ∣ 0 0.05 0.5 0 ∣ ∣ = − 0.025 ; − ∣ A 21 ∣ = − ∣ ∣ 3 0 0 1 ∣ ∣ = − 3 ;
+ ∣ A 22 ∣ = + ∣ 1 0 0.05 1 ∣ = 1 ; − ∣ A 23 ∣ = − ∣ 1 3 0.05 0 ∣ = 0.15 ; +|A_{22} |=+\begin{vmatrix}1& 0\\0.05 & 1\end{vmatrix}=1;\\ \ \\
-|A_{23} |=-\begin{vmatrix}1 & 3 \\0.05& 0\end{vmatrix}=0.15; + ∣ A 22 ∣ = + ∣ ∣ 1 0.05 0 1 ∣ ∣ = 1 ; − ∣ A 23 ∣ = − ∣ ∣ 1 0.05 3 0 ∣ ∣ = 0.15 ;
+ ∣ A 31 ∣ = + ∣ 3 0 0 1 ∣ = 3 ; − ∣ A 32 ∣ = − ∣ 1 0 0 1 ∣ = − 1 ; + ∣ A 33 ∣ = + ∣ 1 3 0 0.5 ∣ = 0.5 ; +|A_{31} |=+\begin{vmatrix}3 & 0\\0 & 1\end{vmatrix}=3;\\ \ \\
-|A_{32} |=-\begin{vmatrix}1 & 0 \\0& 1\end{vmatrix}=-1;\\ \ \\
+|A_{33} |=+\begin{vmatrix}1 & 3\\0 & 0.5\end{vmatrix}=0.5; + ∣ A 31 ∣ = + ∣ ∣ 3 0 0 1 ∣ ∣ = 3 ; − ∣ A 32 ∣ = − ∣ ∣ 1 0 0 1 ∣ ∣ = − 1 ; + ∣ A 33 ∣ = + ∣ ∣ 1 0 3 0.5 ∣ ∣ = 0.5 ;
A − 1 = 1 0.65 ⋅ [ 0.5 − 3 3 0.05 1 − 1 − 0.025 0.15 0.5 ] ; A^{-1} =\cfrac{1}{0.65}\cdot\begin{bmatrix} 0.5 & - 3 & 3\\0.05 & 1&-1\\-0.025&0.15&0.5\end{bmatrix}; A − 1 = 0.65 1 ⋅ ⎣ ⎡ 0.5 0.05 − 0.025 − 3 1 0.15 3 − 1 0.5 ⎦ ⎤ ;
[ x y z ] = 1 0.65 ⋅ [ 0.5 − 3 3 0.05 1 − 1 − 0.025 0.15 0.5 ] ⋅ [ 4 1 3 ] = \begin{bmatrix}
x\\
y\\
z
\end{bmatrix}=\cfrac{1}{0.65}\cdot\begin{bmatrix} 0.5 & - 3 & 3\\0.05 & 1&-1\\-0.025&0.15&0.5\end{bmatrix}\cdot\begin{bmatrix}
4\\
1\\
3
\end{bmatrix}= ⎣ ⎡ x y z ⎦ ⎤ = 0.65 1 ⋅ ⎣ ⎡ 0.5 0.05 − 0.025 − 3 1 0.15 3 − 1 0.5 ⎦ ⎤ ⋅ ⎣ ⎡ 4 1 3 ⎦ ⎤ =
= 1 0.65 ⋅ [ 0.5 ⋅ 4 − 3 ⋅ 1 + 3 ⋅ 3 0.05 ⋅ 4 + 1 ⋅ 1 − 1 ⋅ 3 − 0.025 ⋅ 4 + 0.15 ⋅ 1 + 0.5 ⋅ 3 ] = =\cfrac{1} {0.65} \cdot\begin{bmatrix}
0.5\cdot4-3\cdot1+3\cdot3\\
0.05\cdot4+1\cdot1-1\cdot3\\
-0.025\cdot4+0.15\cdot1+0.5\cdot3
\end{bmatrix}= = 0.65 1 ⋅ ⎣ ⎡ 0.5 ⋅ 4 − 3 ⋅ 1 + 3 ⋅ 3 0.05 ⋅ 4 + 1 ⋅ 1 − 1 ⋅ 3 − 0.025 ⋅ 4 + 0.15 ⋅ 1 + 0.5 ⋅ 3 ⎦ ⎤ =
= 1 0.65 ⋅ [ 8 − 1.8 1.55 ] = [ 12.31 − 2.77 2.38 ] . =\cfrac{1} {0.65} \cdot\begin{bmatrix}
8\\
- 1.8\\
1.55
\end{bmatrix}=\begin{bmatrix}
12.31\\
- 2.77\\
2.38
\end{bmatrix}. = 0.65 1 ⋅ ⎣ ⎡ 8 − 1.8 1.55 ⎦ ⎤ = ⎣ ⎡ 12.31 − 2.77 2.38 ⎦ ⎤ .
Comments