1.5 Solve the equation below using Inverse method (10 marks)
"\\begin{bmatrix}\n 1 & 3 & 0 \\\\\n 0 & 0.5 & 1\\\\\n0.05 & 0 & 1\\\\\n\n \\end{bmatrix}" "\\begin{bmatrix}\n x \\\\\n y\\\\\nz\\\\\n\\end{bmatrix}" ="\\begin{bmatrix}\n 4 \\\\\n 1\\\\\n3\\\\\n\\end{bmatrix}"
"A=\\begin{bmatrix}\n 1 & 3 & 0\\\\\n 0 & 0.5 & 1\\\\\n0.05 & 0 & 1\n\\end{bmatrix},X=\\begin{bmatrix}\n x \\\\\n y \\\\\nz\n\\end{bmatrix},\nB=\\begin{bmatrix}\n 4 \\\\\n 1\\\\\n3\n\\end{bmatrix}."
Matrix 𝑋 satisfying the equation 𝐴𝑋=𝐵
is given by "X=A^{-1} B."
Let us begin by finding the inverse of the 3×3 matrix .
"\\text{det} A=a_{11}|A_{11}|-a_{12}|A_{12}|+a_{13}|A_{13}|="
"=1\\cdot\\begin{vmatrix} 0.5& 1\\\\0&1\\end{vmatrix}-3\\cdot\\begin{vmatrix} 0& 1\\\\0.05&1\\end{vmatrix}+0\\cdot\\begin{vmatrix} 0& 0.5\\\\0.05&0\\end{vmatrix}="
"=1\\cdot(0.5\\cdot1-1\\cdot0)-3\\cdot(0\\cdot1-1\\cdot0.05)+0=0.65;"
"+|A_{11 } |=+\\begin{vmatrix}0.5 & 1 \\\\0 & 1\\end{vmatrix}=0.5\\cdot1-1\\cdot0=0.5;"
"-|A_{12} |=-\\begin{vmatrix}0 & 1 \\\\0.05& 1\\end{vmatrix}=-(0\\cdot1-1\\cdot0.05)=0.05;"
"+|A_{13} |=+\\begin{vmatrix}0 & 0.5\\\\0.05 & 0\\end{vmatrix}=-0.025;\\\\ \\ \\\\\n-|A_{21} |=-\\begin{vmatrix}3 & 0 \\\\0& 1\\end{vmatrix}=-3;\\\\"
"+|A_{22} |=+\\begin{vmatrix}1& 0\\\\0.05 & 1\\end{vmatrix}=1;\\\\ \\ \\\\\n-|A_{23} |=-\\begin{vmatrix}1 & 3 \\\\0.05& 0\\end{vmatrix}=0.15;"
"+|A_{31} |=+\\begin{vmatrix}3 & 0\\\\0 & 1\\end{vmatrix}=3;\\\\ \\ \\\\\n-|A_{32} |=-\\begin{vmatrix}1 & 0 \\\\0& 1\\end{vmatrix}=-1;\\\\ \\ \\\\\n+|A_{33} |=+\\begin{vmatrix}1 & 3\\\\0 & 0.5\\end{vmatrix}=0.5;"
"A^{-1} =\\cfrac{1}{0.65}\\cdot\\begin{bmatrix} 0.5 & - 3 & 3\\\\0.05 & 1&-1\\\\-0.025&0.15&0.5\\end{bmatrix};"
"\\begin{bmatrix}\n x\\\\\n y\\\\\nz\n\\end{bmatrix}=\\cfrac{1}{0.65}\\cdot\\begin{bmatrix} 0.5 & - 3 & 3\\\\0.05 & 1&-1\\\\-0.025&0.15&0.5\\end{bmatrix}\\cdot\\begin{bmatrix}\n 4\\\\\n 1\\\\\n3\n\\end{bmatrix}="
"=\\cfrac{1} {0.65} \\cdot\\begin{bmatrix}\n 0.5\\cdot4-3\\cdot1+3\\cdot3\\\\\n 0.05\\cdot4+1\\cdot1-1\\cdot3\\\\\n-0.025\\cdot4+0.15\\cdot1+0.5\\cdot3\n\\end{bmatrix}="
"=\\cfrac{1} {0.65} \\cdot\\begin{bmatrix}\n 8\\\\\n - 1.8\\\\\n1.55\n\\end{bmatrix}=\\begin{bmatrix}\n 12.31\\\\\n - 2.77\\\\\n2.38\n\\end{bmatrix}."
Comments
Leave a comment