Using a Truth table, determine the value of the compound proposition(10marks)
((π β¨ π) β§ (οΏ’π β¨ π)) β (π β¨ π).
"p~~~q~~~r~~~p\\lor q~~~\\lnot p\\lor r~~~(p\\lor q)\\land(\\lnot p\\lor r)\\\\\n0~~~0~~~0~~~~~~0~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~0\\\\\n0~~~0~~~1~~~~~~0~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~0\\\\\n0~~~1~~~0~~~~~~1~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~1\\\\\n0~~~1~~~1~~~~~~1~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~1\\\\\n1~~~0~~~0~~~~~~1~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~0\\\\\n1~~~0~~~1~~~~~~1~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~1\\\\\n1~~~1~~~0~~~~~~1~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~0\\\\\n1~~~1~~~1~~~~~~1~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~1\\\\"
"Let\\space s=(p\\lor q)\\land(\\lnot p\\lor r)"
"p~~~q~~~r~~~s~~~q\\lor r~~~s\\rarr(q\\lor r)\\\\\n0~~~0~~~0~~~0~~~~~~0~~~~~~~~~~~~~~1\\\\\n0~~~0~~~1~~~0~~~~~~1~~~~~~~~~~~~~~1\\\\\n0~~~1~~~0~~~1~~~~~~1~~~~~~~~~~~~~~1\\\\\n0~~~1~~~1~~~1~~~~~~1~~~~~~~~~~~~~~1\\\\\n1~~~0~~~0~~~0~~~~~~0~~~~~~~~~~~~~~1\\\\\n1~~~0~~~1~~~1~~~~~~1~~~~~~~~~~~~~~1\\\\\n1~~~1~~~0~~~0~~~~~~1~~~~~~~~~~~~~~1\\\\\n1~~~1~~~1~~~1~~~~~~1~~~~~~~~~~~~~~1\\\\"
((π β¨ π) β§ (οΏ’π β¨ π)) β (π β¨ π) is always true.
Comments
Leave a comment