Answer to Question #327315 in Discrete Mathematics for Dreaper

Question #327315

Show your solution.

1.     Show, by the use of the truth table/matrix, that the statement (p∨q)∨ (¬q) is tautology.

2.     Show that p ↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically equivalent.


1
Expert's answer
2022-04-12T12:05:19-0400

1.

p      q      pq      ¬q      (pq)(¬q)0      0         0           1                  10      1         1           0                  11      0         1           1                  11      1         1           0                  1p~~~~~~q~~~~~~p\lor q~~~~~~\lnot q~~~~~~(p\lor q)\lor(\lnot q)\\ 0~~~~~~0~~~~~~~~~0~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~1\\ 0~~~~~~1~~~~~~~~~1~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~1\\ 1~~~~~~0~~~~~~~~~1~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~1\\ 1~~~~~~1~~~~~~~~~1~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~1

We can see that (pq)(¬q)(p\lor q)\lor(\lnot q) is always true meaning that it is a tautology.

2.

p      q      pq      ¬p¬q      (pq)(¬p¬q)0      0         0               1                          10      1         0               0                          01      0         0               0                          01      1         1               0                          1p~~~~~~q~~~~~~p\land q~~~~~~\lnot p\land\lnot q~~~~~~(p\land q)\lor(\lnot p\land\lnot q)\\ 0~~~~~~0~~~~~~~~~0~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~~~~~~1\\ 0~~~~~~1~~~~~~~~~0~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~0\\ 1~~~~~~0~~~~~~~~~0~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~0\\ 1~~~~~~1~~~~~~~~~1~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~1


p      q      pq0      0          10      1          01      0          01      1          1p~~~~~~q~~~~~~p\lrarr q\\ 0~~~~~~0~~~~~~~~~~1\\ 0~~~~~~1~~~~~~~~~~0\\ 1~~~~~~0~~~~~~~~~~0\\ 1~~~~~~1~~~~~~~~~~1


Comparing two last tables we can see that (pq)(¬p¬q)=pq(p\land q)\lor(\lnot p\land\lnot q)=p\lrarr q


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment