Answer to Question #327315 in Discrete Mathematics for Dreaper

Question #327315

Show your solution.

1.     Show, by the use of the truth table/matrix, that the statement (p∨q)∨ (¬q) is tautology.

2.     Show that p ↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically equivalent.


1
Expert's answer
2022-04-12T12:05:19-0400

1.

"p~~~~~~q~~~~~~p\\lor q~~~~~~\\lnot q~~~~~~(p\\lor q)\\lor(\\lnot q)\\\\\n0~~~~~~0~~~~~~~~~0~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~1\\\\\n0~~~~~~1~~~~~~~~~1~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~1\\\\\n1~~~~~~0~~~~~~~~~1~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~1\\\\\n1~~~~~~1~~~~~~~~~1~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~1"

We can see that "(p\\lor q)\\lor(\\lnot q)" is always true meaning that it is a tautology.

2.

"p~~~~~~q~~~~~~p\\land q~~~~~~\\lnot p\\land\\lnot q~~~~~~(p\\land q)\\lor(\\lnot p\\land\\lnot q)\\\\\n0~~~~~~0~~~~~~~~~0~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~~~~~~1\\\\\n0~~~~~~1~~~~~~~~~0~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~0\\\\\n1~~~~~~0~~~~~~~~~0~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~0\\\\\n1~~~~~~1~~~~~~~~~1~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~1"


"p~~~~~~q~~~~~~p\\lrarr q\\\\\n0~~~~~~0~~~~~~~~~~1\\\\\n0~~~~~~1~~~~~~~~~~0\\\\\n1~~~~~~0~~~~~~~~~~0\\\\\n1~~~~~~1~~~~~~~~~~1"


Comparing two last tables we can see that "(p\\land q)\\lor(\\lnot p\\land\\lnot q)=p\\lrarr q"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS