Show your solution.
1. Show, by the use of the truth table/matrix, that the statement (p∨q)∨ (¬q) is tautology.
2. Show that p ↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically equivalent.
1.
"p~~~~~~q~~~~~~p\\lor q~~~~~~\\lnot q~~~~~~(p\\lor q)\\lor(\\lnot q)\\\\\n0~~~~~~0~~~~~~~~~0~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~1\\\\\n0~~~~~~1~~~~~~~~~1~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~1\\\\\n1~~~~~~0~~~~~~~~~1~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~1\\\\\n1~~~~~~1~~~~~~~~~1~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~1"
We can see that "(p\\lor q)\\lor(\\lnot q)" is always true meaning that it is a tautology.
2.
"p~~~~~~q~~~~~~p\\land q~~~~~~\\lnot p\\land\\lnot q~~~~~~(p\\land q)\\lor(\\lnot p\\land\\lnot q)\\\\\n0~~~~~~0~~~~~~~~~0~~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~~~~~~1\\\\\n0~~~~~~1~~~~~~~~~0~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~0\\\\\n1~~~~~~0~~~~~~~~~0~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~0\\\\\n1~~~~~~1~~~~~~~~~1~~~~~~~~~~~~~~~0~~~~~~~~~~~~~~~~~~~~~~~~~~1"
"p~~~~~~q~~~~~~p\\lrarr q\\\\\n0~~~~~~0~~~~~~~~~~1\\\\\n0~~~~~~1~~~~~~~~~~0\\\\\n1~~~~~~0~~~~~~~~~~0\\\\\n1~~~~~~1~~~~~~~~~~1"
Comparing two last tables we can see that "(p\\land q)\\lor(\\lnot p\\land\\lnot q)=p\\lrarr q"
Comments
Leave a comment