Given g(x) = (x + 1)(x^2 − x), g: R → R where R is the set of real numbers.
a) Find the domain and range of the function g. (2 marks)
b) Determine whether the function is injective, surjective, and/or bijective. Justify
your answers. (7 marks)
"a:\\\\Dom\\left( g \\right) =\\mathbb{R} , \\sin ce\\,\\,g\\,\\,is\\,\\,defined\\,\\,for\\,\\,all\\,\\,x\\\\\\underset{x\\rightarrow +\\infty}{\\lim}\\left( x+1 \\right) \\left( x^2-x \\right) =\\left[ +\\infty \\cdot +\\infty \\right] =+\\infty \\\\\\underset{x\\rightarrow -\\infty}{\\lim}\\left( x+1 \\right) \\left( x^2-x \\right) =\\left[ +\\infty \\cdot -\\infty \\right] =-\\infty \\\\Since\\,\\,g\\,\\,is\\,\\,continuous, from\\,\\,these\\,\\,Range\\left( g \\right) =\\mathbb{R} \\\\b:\\\\injective\\,\\,-\\,\\,false: g\\left( 0 \\right) =g\\left( 1 \\right) =0\\\\surjective\\,\\,-\\,\\,true, \\sin ce\\,\\,Range\\left( g \\right) =\\mathbb{R} \\\\bijective\\,\\,-\\,\\,false, \\sin ce\\,\\,it\\,\\,is\\,\\,not\\,\\,injective"
Comments
Leave a comment