Let Q and R be any two sets given, prove that [Q̅ ∪ (Q − R)][overlined] = Q ∩ R.
[Q‾∪(Q−R)]‾=[Q‾∪(Q∩Rˉ)]‾=[(Q‾∪Q)∩(Q‾∪R‾)]‾==[T∩(Q‾∪R‾)]‾=Q‾∪R‾‾=Q∩R\overline{\left[ \overline{Q}\cup \left( Q-R \right) \right] }=\overline{\left[ \overline{Q}\cup \left( Q\cap \bar{R} \right) \right] }=\overline{\left[ \left( \overline{Q}\cup Q \right) \cap \left( \overline{Q}\cup \overline{R} \right) \right] }=\\=\overline{\left[ T\cap \left( \overline{Q}\cup \overline{R} \right) \right] }=\overline{\overline{Q}\cup \overline{R}}=Q\cap R[Q∪(Q−R)]=[Q∪(Q∩Rˉ)]=[(Q∪Q)∩(Q∪R)]==[T∩(Q∪R)]=Q∪R=Q∩R
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments