Let Q and R be any two sets given, prove that [Q̅ ∪ (Q − R)][overlined] = Q ∩ R.
"\\overline{\\left[ \\overline{Q}\\cup \\left( Q-R \\right) \\right] }=\\overline{\\left[ \\overline{Q}\\cup \\left( Q\\cap \\bar{R} \\right) \\right] }=\\overline{\\left[ \\left( \\overline{Q}\\cup Q \\right) \\cap \\left( \\overline{Q}\\cup \\overline{R} \\right) \\right] }=\\\\=\\overline{\\left[ T\\cap \\left( \\overline{Q}\\cup \\overline{R} \\right) \\right] }=\\overline{\\overline{Q}\\cup \\overline{R}}=Q\\cap R"
Comments
Leave a comment