Question #318020

What is the solution for the recurrence relation a_n=2a_{n−1}−1

an

​=2an−1

​−1 with a_1=3

a1

​=3 .


1
Expert's answer
2022-03-28T10:22:03-0400

an=2an11=2(2an21)1=22an2(1+2)==...=2n1a1(1+2+...+2n2)=2n132n1121==32n12n1+1=2n+1a_n=2a_{n-1}-1=2\left( 2a_{n-2}-1 \right) -1=2^2\cdot a_{n-2}-\left( 1+2 \right) =\\=...=2^{n-1}a_1-\left( 1+2+...+2^{n-2} \right) =2^{n-1}\cdot 3-\frac{2^{n-1}-1}{2-1}=\\=3\cdot 2^{n-1}-2^{n-1}+1=2^n+1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS