What is the solution for the recurrence relation a_n=2a_{n−1}−1
an
=2an−1
−1 with a_1=3
a1
=3 .
"a_n=2a_{n-1}-1=2\\left( 2a_{n-2}-1 \\right) -1=2^2\\cdot a_{n-2}-\\left( 1+2 \\right) =\\\\=...=2^{n-1}a_1-\\left( 1+2+...+2^{n-2} \\right) =2^{n-1}\\cdot 3-\\frac{2^{n-1}-1}{2-1}=\\\\=3\\cdot 2^{n-1}-2^{n-1}+1=2^n+1"
Comments
Leave a comment