What is the solution for the recurrence relation a_n=2a_{n−1}−1
an
=2an−1
−1 with a_1=3
a1
=3 .
an=2an−1−1=2(2an−2−1)−1=22⋅an−2−(1+2)==...=2n−1a1−(1+2+...+2n−2)=2n−1⋅3−2n−1−12−1==3⋅2n−1−2n−1+1=2n+1a_n=2a_{n-1}-1=2\left( 2a_{n-2}-1 \right) -1=2^2\cdot a_{n-2}-\left( 1+2 \right) =\\=...=2^{n-1}a_1-\left( 1+2+...+2^{n-2} \right) =2^{n-1}\cdot 3-\frac{2^{n-1}-1}{2-1}=\\=3\cdot 2^{n-1}-2^{n-1}+1=2^n+1an=2an−1−1=2(2an−2−1)−1=22⋅an−2−(1+2)==...=2n−1a1−(1+2+...+2n−2)=2n−1⋅3−2−12n−1−1==3⋅2n−1−2n−1+1=2n+1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments