An=2*n+an-1,A1=1
an=2n+an−1,a1=1an=2n+an−1=2n+2(n−1)+an−2=...==2n+2(n−1)+...+2⋅2+a1==1+2(2+3+...+n)=1+2(n(n−1)2−1)==1+n2−n−2=n2−n−1a_n=2n+a_{n-1},a_1=1\\a_n=2n+a_{n-1}=2n+2\left( n-1 \right) +a_{n-2}=...=\\=2n+2\left( n-1 \right) +...+2\cdot 2+a_1=\\=1+2\left( 2+3+...+n \right) =1+2\left( \frac{n\left( n-1 \right)}{2}-1 \right) =\\=1+n^2-n-2=n^2-n-1an=2n+an−1,a1=1an=2n+an−1=2n+2(n−1)+an−2=...==2n+2(n−1)+...+2⋅2+a1==1+2(2+3+...+n)=1+2(2n(n−1)−1)==1+n2−n−2=n2−n−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments