Prove that ((𝑝 → 𝑞) ⋀ ¬𝑞 ) → ¬𝑝 ) it’s tautology without using truth table?
"\\left( \\left( p\\rightarrow q \\right) \\land \\lnot q \\right) \\rightarrow \\lnot p=\\left( \\left( \\lnot p\\lor q \\right) \\land \\lnot q \\right) \\rightarrow \\lnot p=\\\\=\\left( \\left( \\lnot p\\land \\lnot q \\right) \\lor \\left( q\\land \\lnot q \\right) \\right) \\rightarrow \\lnot p=\\\\=\\left( \\lnot p\\land \\lnot q \\right) \\rightarrow \\lnot p=\\lnot \\left( \\lnot p\\land \\lnot q \\right) \\lor \\lnot p=p\\lor q\\lor \\lnot p=T"
Comments
Leave a comment