Question #316765

Prove that ((𝑝 → 𝑞) ⋀ ¬𝑞 ) → ¬𝑝 ) it’s tautology without using truth table?


1
Expert's answer
2022-03-24T19:23:51-0400

((pq)¬q)¬p=((¬pq)¬q)¬p==((¬p¬q)(q¬q))¬p==(¬p¬q)¬p=¬(¬p¬q)¬p=pq¬p=T\left( \left( p\rightarrow q \right) \land \lnot q \right) \rightarrow \lnot p=\left( \left( \lnot p\lor q \right) \land \lnot q \right) \rightarrow \lnot p=\\=\left( \left( \lnot p\land \lnot q \right) \lor \left( q\land \lnot q \right) \right) \rightarrow \lnot p=\\=\left( \lnot p\land \lnot q \right) \rightarrow \lnot p=\lnot \left( \lnot p\land \lnot q \right) \lor \lnot p=p\lor q\lor \lnot p=T


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS