Prove that ((𝑝 → 𝑞) ⋀ ¬𝑞 ) → ¬𝑝 ) it’s tautology without using truth table?
((p→q)∧¬q)→¬p=((¬p∨q)∧¬q)→¬p==((¬p∧¬q)∨(q∧¬q))→¬p==(¬p∧¬q)→¬p=¬(¬p∧¬q)∨¬p=p∨q∨¬p=T\left( \left( p\rightarrow q \right) \land \lnot q \right) \rightarrow \lnot p=\left( \left( \lnot p\lor q \right) \land \lnot q \right) \rightarrow \lnot p=\\=\left( \left( \lnot p\land \lnot q \right) \lor \left( q\land \lnot q \right) \right) \rightarrow \lnot p=\\=\left( \lnot p\land \lnot q \right) \rightarrow \lnot p=\lnot \left( \lnot p\land \lnot q \right) \lor \lnot p=p\lor q\lor \lnot p=T((p→q)∧¬q)→¬p=((¬p∨q)∧¬q)→¬p==((¬p∧¬q)∨(q∧¬q))→¬p==(¬p∧¬q)→¬p=¬(¬p∧¬q)∨¬p=p∨q∨¬p=T
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments