Let A, B, and C be sets. Show that (A − B) − C =
(A − C) − (B − C).
"\\left( A-B \\right) -C=\\left( A\\cap \\bar{B} \\right) -C=A\\cap \\bar{B}\\cap \\bar{C}\\\\\\left( A-C \\right) -\\left( B-C \\right) =\\left( A\\cap \\bar{C} \\right) -\\left( B\\cap \\bar{C} \\right) =\\\\=\\left( A\\cap \\bar{C} \\right) \\cap \\overline{B\\cap \\bar{C}}=A\\cap \\bar{C}\\cap \\left( \\bar{B}\\cup C \\right) =\\\\=\\left( A\\cap \\bar{C}\\cap \\bar{B} \\right) \\cup \\left( A\\cap \\bar{C}\\cap C \\right) =\\left( A\\cap \\bar{C}\\cap \\bar{B} \\right) \\cup \\emptyset =A\\cap \\bar{B}\\cap \\bar{C}"
Comments
Leave a comment