Consider the following relations on {1, 2, 3, 4}.
R1 = {(2,2), (2,3),(2,4),(3,2),(3,3),(3,4)}
R2 = {(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)}
R3 = {2,4),(4,2)}
R4 = {(1,2),(2,3),(3,4)}
R5 = {(1,1),(2,2),(3,3),(4,4)}
a)Â Â Â Which of these relations are reflexive? Justify your answers.
b)Â Â Â Which of these relations are symmetric? Justify your answers.
c)Â Â Â Which of these relations are antisymmetric? Justify your answer.
d)Â Â Â Which of these relations are transitive? Justify your answers.
"a:those\\,\\,which\\,\\,contain\\,\\,\\left( 1,1 \\right) ,\\left( 2,2 \\right) ,\\left( 3,3 \\right) ,\\left( 4,4 \\right) ,i.e.R_2,R_5\\\\b:those\\,\\,which\\,\\,contain\\,\\,\\left( a,b \\right) \\,\\,together\\,\\,with\\,\\,\\left( b,a \\right) ,i.e.R_3,R_5\\\\c:those\\,\\,for\\,\\,which\\,\\left( a,b \\right) \\in R,\\left( b,a \\right) \\in R\\Rightarrow a=b\\\\R_1-no,\\left( 2,3 \\right) \\in R_1,\\left( 3,2 \\right) \\in R_1\\\\R_2-no,\\left( 1,2 \\right) \\in R_2,\\left( 2,1 \\right) \\in R_2\\\\R_3-no,\\left( 2,4 \\right) \\in R_3,\\left( 4,2 \\right) \\in R_3\\\\R_4-yes, \\left( 1,2 \\right) \\in R_4,\\left( 2,1 \\right) \\notin R_4,\\left( 2,3 \\right) \\in R_4,\\left( 3,2 \\right) \\notin R_4,\\left( 3,4 \\right) \\in R_4,\\left( 4,3 \\right) \\notin R_4\\\\R_5-yes, no\\,\\,pairs\\,\\,\\left( a,b \\right) \\,\\,with\\,\\,a\\ne b\\\\R_4,R_5\\\\d:those\\,\\,which\\,\\,contain\\,\\,\\left( a,c \\right) \\,\\,together\\,\\,with\\,\\,\\left( a,b \\right) ,\\left( b,c \\right) ,i.e.R_1,R_2,R_5"
Comments
Leave a comment