1. Determine whether these functions are onto, one-to-one, both or neither. Justify your answer.
a) f(1) = c, f(2) = d, f(3) = a, f(4) = d, f(5) = b
b) g(1) = d, g(2) = c, g(3) = a, g(4) = b
c) h(1) = b, h(2) = d, h(3) = b, h(4) = c
a:not one−to−one,f(2)=f(4)onto,f({1,2,3,4})={a,b,c,d}b:one−to−one,g(1),g(2),g(3),g(4) all differentonto,g({1,2,3,4})={a,b,c,d}c:not one−to−one,h(1)=h(3)not onto,h({1,2,3,4})={b,c,d}≠{a,b,c,d}a:\\not\,\,one-to-one, f\left( 2 \right) =f\left( 4 \right) \\onto, f\left( \left\{ 1,2,3,4 \right\} \right) =\left\{ a,b,c,d \right\} \\b:\\one-to-one, g\left( 1 \right) ,g\left( 2 \right) ,g\left( 3 \right) ,g\left( 4 \right) \,\,all\,\,different\\onto, g\left( \left\{ 1,2,3,4 \right\} \right) =\left\{ a,b,c,d \right\} \\c:\\not\,\,one-to-one, h\left( 1 \right) =h\left( 3 \right) \\not\,\,onto, h\left( \left\{ 1,2,3,4 \right\} \right) =\left\{ b,c,d \right\} \ne \left\{ a,b,c,d \right\}a:notone−to−one,f(2)=f(4)onto,f({1,2,3,4})={a,b,c,d}b:one−to−one,g(1),g(2),g(3),g(4)alldifferentonto,g({1,2,3,4})={a,b,c,d}c:notone−to−one,h(1)=h(3)notonto,h({1,2,3,4})={b,c,d}={a,b,c,d}
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment