1. Prove or disprove that the two propositions in each pair are equivalent.
a) (p "\\to" (q "\\to" r)) , ((p "\\to" q ) "\\to" ( p "\\to" r ))
Remind that logical implication "\\rightarrow" can be rewritten via a logical disjunction. Namely, "a\\rightarrow b=\\bar{a}\\lor b". Thus, the first statement can be rewritten as: "p\\rightarrow(q\\rightarrow r)=\\bar{p}\\lor{\\bar{q}}\\lor r". The second statement can be rewritten as: "(p\\rightarrow q)\\rightarrow(p\\rightarrow r)=\\overline{(\\bar{p}\\lor q)}\\lor(\\bar{p}\\lor r)". Remind that a negation of a disjunction can be rewritten via conjunction. Namely, "\\overline{(\\bar{p}\\lor q)}=p\\land {\\bar{q}}". It can checked via the truth table. Thus, we get: "(p\\rightarrow q)\\rightarrow(p\\rightarrow r)=(p\\land {\\bar{q}})\\lor(\\bar{p}\\lor r)". To complete the proof, it is enough to check that "(p\\land {\\bar{q}})\\lor{\\bar{p}}=\\bar{p}\\lor{\\bar{q}}" . It holds, since the statement "p\\lor{\\bar{p}}" is tautology, From the latter we get: "(p\\land {\\bar{q}})\\lor({\\bar{p}}\\lor r)=\\bar{p}\\lor({\\bar{q}}\\lor r)". Thus, both statements are equivalent.
Comments
Leave a comment