Question #314297

Show, by the use of the truth table (truth matrix), that the (p ∨ q) ∨ [(¬p) ∧ (¬q)] is a contradiction. 



1
Expert's answer
2022-03-19T08:54:29-0400

Let us construct the trush table.


pq¬p¬qpq(¬p)(¬q)(pq)[(¬p)(¬q)]0011011011010110011011100101\begin{array}{||c|c||c|c|c|c|c||} \hline \hline p & q & ¬p & ¬q & p ∨ q & (¬p) ∧ (¬q) & (p ∨ q) ∨ [(¬p) ∧ (¬q)]\\ \hline 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 1 & 0 & 1\\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1\\ \hline\hline \end{array}


It follows that the formula (pq)[(¬p)(¬q)](p ∨ q) ∨ [(¬p) ∧ (¬q)] is a tautology, and it is not a contradiction.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS