Show, by the use of the truth table (truth matrix), that the (p ∨ q) ∨ [(¬p) ∧ (¬q)] is a contradiction.
Let us construct the trush table.
"\\begin{array}{||c|c||c|c|c|c|c||}\n\\hline \\hline\np & q & \u00acp & \u00acq & p \u2228 q & (\u00acp) \u2227 (\u00acq) & (p \u2228 q) \u2228 [(\u00acp) \u2227 (\u00acq)]\\\\\n\\hline\n0 & 0 & 1 & 1 & 0 & 1 & 1 \\\\\n\\hline\n0 & 1 & 1 & 0 & 1 & 0 & 1\\\\\n\\hline\n1 & 0 & 0 & 1 & 1 & 0 & 1 \\\\\n\\hline\n1 & 1 & 0 & 0 & 1 & 0 & 1\\\\\n\\hline\\hline\n\\end{array}"
It follows that the formula "(p \u2228 q) \u2228 [(\u00acp) \u2227 (\u00acq)]" is a tautology, and it is not a contradiction.
Comments
Leave a comment