Answer to Question #314297 in Discrete Mathematics for Dreaper

Question #314297

Show, by the use of the truth table (truth matrix), that the (p ∨ q) ∨ [(¬p) ∧ (¬q)] is a contradiction. 



1
Expert's answer
2022-03-19T08:54:29-0400

Let us construct the trush table.


"\\begin{array}{||c|c||c|c|c|c|c||}\n\\hline \\hline\np & q & \u00acp & \u00acq & p \u2228 q & (\u00acp) \u2227 (\u00acq) & (p \u2228 q) \u2228 [(\u00acp) \u2227 (\u00acq)]\\\\\n\\hline\n0 & 0 & 1 & 1 & 0 & 1 & 1 \\\\\n\\hline\n0 & 1 & 1 & 0 & 1 & 0 & 1\\\\\n\\hline\n1 & 0 & 0 & 1 & 1 & 0 & 1 \\\\\n\\hline\n1 & 1 & 0 & 0 & 1 & 0 & 1\\\\\n\\hline\\hline\n\\end{array}"


It follows that the formula "(p \u2228 q) \u2228 [(\u00acp) \u2227 (\u00acq)]" is a tautology, and it is not a contradiction.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS