Show, by the use of the truth table (truth matrix), that the (p ∨ q) ∨ [(¬p) ∧ (¬q)] is a contradiction.
Let us construct the trush table.
pq¬p¬qp∨q(¬p)∧(¬q)(p∨q)∨[(¬p)∧(¬q)]0011011011010110011011100101\begin{array}{||c|c||c|c|c|c|c||} \hline \hline p & q & ¬p & ¬q & p ∨ q & (¬p) ∧ (¬q) & (p ∨ q) ∨ [(¬p) ∧ (¬q)]\\ \hline 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 1 & 0 & 1\\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1\\ \hline\hline \end{array}p0011q0101¬p1100¬q1010p∨q0111(¬p)∧(¬q)1000(p∨q)∨[(¬p)∧(¬q)]1111
It follows that the formula (p∨q)∨[(¬p)∧(¬q)](p ∨ q) ∨ [(¬p) ∧ (¬q)](p∨q)∨[(¬p)∧(¬q)] is a tautology, and it is not a contradiction.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments