Let R1 and R2 be two relation on real number such that R1 = {(x, y)|x < y} and R2 =
{(x, y)|x > y}, then find R1 ∪ R2,R1 ∩ R2,R1 − R2, R2 − R1, and R1+LR2.
R1"\\cup" R2={(x,y)|x>y or x<y}={(x,y)|x!=y}
R1"\\cap" R2={(x,y)|x>y and x<y}="\\varnothing"
R1-R2=R1-R1"\\cap" R2=R1 -{(x,y)|x>y and x<y}=R1-"\\varnothing"=R1
R2-R1=R2-R1"\\cap" R2=R2 -{(x,y)|x>y and x<y}=R2-"\\varnothing"=R2
R1+LR2=R1"\\cup" LR2-R1"\\cap" LR2={(х,у)"|\\forall x \\in\\R,\\forall y \\in \\R"}-∅={(x,y)"|\\forall x \\in\\R,\\forall y \\in \\R" }
Comments
Leave a comment