Question #309021

Express each of these mathematical statements using predicates, quantifiers, logical connectives, and mathematical operators.

a) The product of two negative real numbers is positive.

b) The difference of a real number and itself is zero.

c) Every positive real number has exactly two square roots.

d) A negative real number does not have a square root that is a real number. e) Every non-zero real number has a unique reciprocal. 


1
Expert's answer
2022-03-11T11:29:29-0500

a)xR  yR(x<0y<0)    (xy>0)a)\,\forall x\in\mathbb{R}\; \forall y\in\mathbb{R} \: (x<0\: \land \: y<0) \implies (x\cdot y>0)

b)xR(xx=0)b) \,\forall x\in\mathbb{R} \: (x-x=0)

c)xR(x>0)    y1R  y2R(y1y2)(x=y12=y22)(yR(y2=x)    (y=y1y=y2))c) \, \forall x \in\mathbb{R} \: (x>0) \implies \exist y_1\in\mathbb{R}\; \exists y_2\in\mathbb{R} \: (y_1\neq y_2)\land\\ \land (x=y_1^2=y_2^2) \land \\ \land (\forall y \in\mathbb{R} \: (y^2=x)\implies (y=y_1 \lor y=y_2))

d)xR  (x<0)    yR(y2x)d)\,\forall x\in\mathbb{R}\; (x<0) \implies \forall y\in\mathbb{R} \: (y^2\neq x)

e)xR  (x0)    (yR  (xy=1)(zR  (xz=1)    (z=y)))e) \,\forall x \in\mathbb{R} \; (x\neq 0) \implies (\exists y \in\mathbb{R} \; (x\cdot y=1) \land \\ \land (\forall z\in\mathbb{R} \; (x\cdot z=1) \implies (z=y)))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS