Express each of these mathematical statements using predicates, quantifiers, logical connectives, and mathematical operators.
a) The product of two negative real numbers is positive.
b) The difference of a real number and itself is zero.
c) Every positive real number has exactly two square roots.
d) A negative real number does not have a square root that is a real number. e) Every non-zero real number has a unique reciprocal.
a) ∀x∈R ∀y∈R (x<0 ∧ y<0) ⟹ (x⋅y>0)a)\,\forall x\in\mathbb{R}\; \forall y\in\mathbb{R} \: (x<0\: \land \: y<0) \implies (x\cdot y>0)a)∀x∈R∀y∈R(x<0∧y<0)⟹(x⋅y>0)
b) ∀x∈R (x−x=0)b) \,\forall x\in\mathbb{R} \: (x-x=0)b)∀x∈R(x−x=0)
c) ∀x∈R (x>0) ⟹ ∃y1∈R ∃y2∈R (y1≠y2)∧∧(x=y12=y22)∧∧(∀y∈R (y2=x) ⟹ (y=y1∨y=y2))c) \, \forall x \in\mathbb{R} \: (x>0) \implies \exist y_1\in\mathbb{R}\; \exists y_2\in\mathbb{R} \: (y_1\neq y_2)\land\\ \land (x=y_1^2=y_2^2) \land \\ \land (\forall y \in\mathbb{R} \: (y^2=x)\implies (y=y_1 \lor y=y_2))c)∀x∈R(x>0)⟹∃y1∈R∃y2∈R(y1=y2)∧∧(x=y12=y22)∧∧(∀y∈R(y2=x)⟹(y=y1∨y=y2))
d) ∀x∈R (x<0) ⟹ ∀y∈R (y2≠x)d)\,\forall x\in\mathbb{R}\; (x<0) \implies \forall y\in\mathbb{R} \: (y^2\neq x)d)∀x∈R(x<0)⟹∀y∈R(y2=x)
e) ∀x∈R (x≠0) ⟹ (∃y∈R (x⋅y=1)∧∧(∀z∈R (x⋅z=1) ⟹ (z=y)))e) \,\forall x \in\mathbb{R} \; (x\neq 0) \implies (\exists y \in\mathbb{R} \; (x\cdot y=1) \land \\ \land (\forall z\in\mathbb{R} \; (x\cdot z=1) \implies (z=y)))e)∀x∈R(x=0)⟹(∃y∈R(x⋅y=1)∧∧(∀z∈R(x⋅z=1)⟹(z=y)))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments