Express each of these mathematical statements using predicates, quantifiers, logical connectives, and mathematical operators.
a) The product of two negative real numbers is positive.
b) The difference of a real number and itself is zero.
c) Every positive real number has exactly two square roots.
d) A negative real number does not have a square root that is a real number. e) Every non-zero real number has a unique reciprocal.
"a)\\,\\forall x\\in\\mathbb{R}\\; \\forall y\\in\\mathbb{R} \\: (x<0\\: \\land \\: y<0) \\implies (x\\cdot y>0)"
"b) \\,\\forall x\\in\\mathbb{R} \\: (x-x=0)"
"c) \\, \\forall x \\in\\mathbb{R} \\: (x>0) \\implies \\exist y_1\\in\\mathbb{R}\\; \\exists y_2\\in\\mathbb{R} \\: (y_1\\neq y_2)\\land\\\\ \\land (x=y_1^2=y_2^2) \\land \\\\ \\land (\\forall y \\in\\mathbb{R} \\: (y^2=x)\\implies (y=y_1 \\lor y=y_2))"
"d)\\,\\forall x\\in\\mathbb{R}\\; (x<0) \\implies \\forall y\\in\\mathbb{R} \\: (y^2\\neq x)"
"e) \\,\\forall x \\in\\mathbb{R} \\; (x\\neq 0) \\implies (\\exists y \\in\\mathbb{R} \\; (x\\cdot y=1) \\land \\\\ \\land (\\forall z\\in\\mathbb{R} \\; (x\\cdot z=1) \\implies (z=y)))"
Comments
Leave a comment