The sample space is,
S = { ( 1 , 1 ) ( 2 , 1 ) ( 3 , 1 ) ( 4 , 1 ) ( 5 , 1 ) ( 6 , 1 ) ( 1 , 2 ) ( 2 , 2 ) ( 3 , 2 ) ( 4 , 2 ) ( 5 , 2 ) ( 6 , 2 ) ( 1 , 3 ) ( 2 , 3 ) ( 3 , 3 ) ( 4 , 3 ) ( 5 , 3 ) ( 6 , 3 ) ( 1 , 4 ) ( 2 , 4 ) ( 3 , 4 ) ( 4 , 4 ) ( 5 , 4 ) ( 6 , 4 ) ( 1 , 5 ) ( 2 , 5 ) ( 3 , 5 ) ( 4 , 5 ) ( 5 , 5 ) ( 6 , 5 ) ( 1 , 6 ) ( 2 , 6 ) ( 3 , 6 ) ( 4 , 6 ) ( 5 , 6 ) ( 6 , 6 ) } S=\begin{Bmatrix}
(1,1) & (2,1)&(3,1)&(4,1)&(5,1)&(6,1) \\
(1,2) & (2,2)&(3,2)&(4,2)&(5,2)&(6,2)\\
(1,3)&(2,3)&(3,3)&(4,3)&(5,3)&(6,3)\\
(1,4)&(2,4)&(3,4)&(4,4)&(5,4)&(6,4)\\
(1,5)&(2,5)&(3,5)&(4,5)&(5,5)&(6,5)\\
(1,6)&(2,6)&(3,6)&(4,6)&(5,6)&(6,6)
\end{Bmatrix} S = ⎩ ⎨ ⎧ ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 1 , 5 ) ( 1 , 6 ) ( 2 , 1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 2 , 6 ) ( 3 , 1 ) ( 3 , 2 ) ( 3 , 3 ) ( 3 , 4 ) ( 3 , 5 ) ( 3 , 6 ) ( 4 , 1 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 4 , 6 ) ( 5 , 1 ) ( 5 , 2 ) ( 5 , 3 ) ( 5 , 4 ) ( 5 , 5 ) ( 5 , 6 ) ( 6 , 1 ) ( 6 , 2 ) ( 6 , 3 ) ( 6 , 4 ) ( 6 , 5 ) ( 6 , 6 ) ⎭ ⎬ ⎫
This sample space shows the outcome on the first dice followed by the outcome on the second dice.
Let the random variable Z Z Z represent the sum of the outcome on the first dice and the outcome on the second dice.
Taking the sum of the outcome on the first and second dice gives,
Z = { 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12 } Z=\begin{Bmatrix}
2 & 3&4&5&6&7 \\
3 & 4&5&6&7&8\\
4&5&6&7&8&9\\
5&6&7&8&9&10\\
6&7&8&9&10&11\\
7&8&9&10&11&12
\end{Bmatrix} Z = ⎩ ⎨ ⎧ 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12 ⎭ ⎬ ⎫
From the values of the random variable Z Z Z above, the number of times the values is even is 18.
Therefore, the number of ways we can get an even sum is 18 ways.
Comments