Answer to Question #293076 in Discrete Mathematics for sanna

Question #293076

Show that (¬𝑃 ⟢ 𝑅) ∧ (𝑄 ↔ 𝑃) ⟺ (𝑃 ∨ 𝑄 ∨ 𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ ¬𝑅) ∧ (¬𝑃 ∨ 𝑄 ∨ 𝑅) ∧ (¬𝑃 ∨ 𝑄 ∨ ¬𝑅).


1
Expert's answer
2022-02-03T11:33:10-0500

It follows that


(¬𝑃→𝑅)∧(𝑄↔𝑃)(¬𝑃 \to 𝑅) ∧ (𝑄 ↔ 𝑃)

⟺(Β¬Β¬π‘ƒβˆ¨π‘…)∧(𝑄→𝑃)∧(Pβ†’Q)⟺(\neg\neg𝑃 \lor 𝑅) ∧ (𝑄 \to 𝑃) ∧ (P \to Q)

⟺(π‘ƒβˆ¨π‘…)∧(Β¬π‘„βˆ¨π‘ƒ)∧(Β¬P∨Q)⟺(𝑃 \lor 𝑅) ∧ (\neg 𝑄 \lor 𝑃) ∧ (\neg P \lor Q)

⟺(π‘ƒβˆ¨Fβˆ¨π‘…)∧(Β¬π‘„βˆ¨π‘ƒβˆ¨F)∧(Β¬P∨Q∨F)⟺(𝑃 \lor F\lor 𝑅) ∧ (\neg 𝑄 \lor 𝑃\lor F) ∧ (\neg P \lor Q\lor F)

⟺(π‘ƒβˆ¨(Q∧¬Q)βˆ¨π‘…)∧(π‘ƒβˆ¨Β¬π‘„βˆ¨(R∧¬R))∧(Β¬P∨Q∨(R∧¬R))⟺(𝑃 \lor (Q\land \neg Q)\lor 𝑅) ∧ (𝑃\lor\neg 𝑄 \lor (R\land\neg R)) ∧ (\neg P \lor Q\lor (R\land\neg R))

⟺(π‘ƒβˆ¨Qβˆ¨π‘…)∧(π‘ƒβˆ¨Β¬Qβˆ¨π‘…)∧(π‘ƒβˆ¨Β¬π‘„βˆ¨R)∧(π‘ƒβˆ¨Β¬π‘„βˆ¨Β¬R)∧(Β¬P∨Q∨R)∧(Β¬P∨Q∨¬R)⟺(𝑃 \lor Q\lor 𝑅) ∧ (𝑃 \lor \neg Q\lor 𝑅) ∧(𝑃\lor\neg 𝑄 \lor R) ∧(𝑃\lor\neg 𝑄 \lor \neg R) ∧ (\neg P \lor Q\lor R) ∧ (\neg P \lor Q\lor \neg R)

⟺(π‘ƒβˆ¨π‘„βˆ¨π‘…)∧(π‘ƒβˆ¨Β¬π‘„βˆ¨π‘…)∧(π‘ƒβˆ¨Β¬π‘„βˆ¨Β¬π‘…)∧(Β¬π‘ƒβˆ¨π‘„βˆ¨π‘…)∧(Β¬π‘ƒβˆ¨π‘„βˆ¨Β¬π‘…).⟺ (𝑃 ∨ 𝑄 ∨ 𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (𝑃 ∨ ¬𝑄 ∨ ¬𝑅) ∧ (¬𝑃 ∨ 𝑄 ∨ 𝑅) ∧ (¬𝑃 ∨ 𝑄 ∨ ¬𝑅).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment