Show that (ยฌ๐ โถ ๐ ) โง (๐ โ ๐) โบ (๐ โจ ๐ โจ ๐ ) โง (๐ โจ ยฌ๐ โจ ๐ ) โง (๐ โจ ยฌ๐ โจ ยฌ๐ ) โง (ยฌ๐ โจ ๐ โจ ๐ ) โง (ยฌ๐ โจ ๐ โจ ยฌ๐ ).
It follows that
"(\u00ac\ud835\udc43 \\to \ud835\udc45) \u2227 (\ud835\udc44 \u2194 \ud835\udc43)"
"\u27fa(\\neg\\neg\ud835\udc43 \\lor \ud835\udc45) \u2227 (\ud835\udc44 \\to \ud835\udc43) \u2227 (P \\to Q)"
"\u27fa(\ud835\udc43 \\lor \ud835\udc45) \u2227 (\\neg \ud835\udc44 \\lor \ud835\udc43) \u2227 (\\neg P \\lor Q)"
"\u27fa(\ud835\udc43 \\lor F\\lor \ud835\udc45) \u2227 (\\neg \ud835\udc44 \\lor \ud835\udc43\\lor F) \u2227 (\\neg P \\lor Q\\lor F)"
"\u27fa(\ud835\udc43 \\lor (Q\\land \\neg Q)\\lor \ud835\udc45) \u2227 (\ud835\udc43\\lor\\neg \ud835\udc44 \\lor (R\\land\\neg R)) \u2227 (\\neg P \\lor Q\\lor (R\\land\\neg R))"
"\u27fa(\ud835\udc43 \\lor Q\\lor \ud835\udc45) \u2227 (\ud835\udc43 \\lor \\neg Q\\lor \ud835\udc45) \u2227(\ud835\udc43\\lor\\neg \ud835\udc44 \\lor R) \u2227(\ud835\udc43\\lor\\neg \ud835\udc44 \\lor \\neg R) \u2227 (\\neg P \\lor Q\\lor R) \u2227 (\\neg P \\lor Q\\lor \\neg R)"
"\u27fa (\ud835\udc43 \u2228 \ud835\udc44 \u2228 \ud835\udc45) \u2227 (\ud835\udc43 \u2228 \u00ac\ud835\udc44 \u2228 \ud835\udc45) \u2227 (\ud835\udc43 \u2228 \u00ac\ud835\udc44 \u2228 \u00ac\ud835\udc45) \u2227 (\u00ac\ud835\udc43 \u2228 \ud835\udc44 \u2228 \ud835\udc45) \u2227 (\u00ac\ud835\udc43 \u2228 \ud835\udc44 \u2228 \u00ac\ud835\udc45)."
Comments
Leave a comment