Prove that 1·1 ! + 2·2!+· ··+ n · n! = (n+I)!-1
whenever n is a positive integer.
"\\begin{aligned}\n&\\text { To proof: } 1 \\cdot 1 !+2 \\cdot 2 !+\\ldots+n \\cdot n !=(n+1) !-1 \\text { for every positive integer } n . \\\\\n&\\text { PROOF BY INDUCTION: } \\\\\n&\\text { Let } P(n) \\text { be } 1 \\cdot 1 !+2 \\cdot 2 !+\\ldots+n \\cdot n !=(n+1) !-1 \\\\\n&\\text { Basis step } n=1 \\\\\n&1 \\cdot 1 !+2 \\cdot 2 !+\\ldots+n \\cdot n !=1 \\cdot 1 !=1 \\cdot 1=1 \\\\\n&(n+1) !-1=(1+1) !-1=2 !-1=2-1=1 \\\\\n&\\text { We then note } P(1) \\text { is true. } \\\\\n&\\text { Induction step: Let } P(k) \\text { be true. } \\\\\n&1 \\cdot 1 !+2 \\cdot 2 !+\\ldots+k \\cdot k !=(k+1) !-1 \\\\\n&\\text { We need to prove that } P(k+1) \\text { is also true. }\n\\end{aligned}"
"\\begin{aligned}\n&1 \\cdot 1 !+2 \\cdot 2 !+\\ldots+k \\cdot k !+(k+1) \\cdot(k+1) ! \\\\\n&=(k+1) !-1+(k+1) \\cdot(k+1) ! \\\\\n&=1 \\cdot(k+1) !+(k+1) \\cdot(k+1) !-1 \\\\\n&=(1+k+1)(k+1) !-1 \\\\\n&=(k+2)(k+1) !-1 \\\\\n&=(k+2) !-1 \\\\\n&=((k+1)+1) !-1\n\\end{aligned}"
We then note that "P(k+1)" is also true.
Conclusion By the principle of mathematical induction, "P(n)" is true for all positive integers "n" .
Thus, "1\u00b71 ! + 2\u00b72!+\u00b7 \u00b7\u00b7+ n \u00b7 n! = (n+1)!-1" whenever n is a positive integer.
Hence Proved
Comments
Leave a comment