Question #293055

Prove that 1·1 ! + 2·2!+· ··+ n · n! = (n+I)!-1


whenever n is a positive integer.


1
Expert's answer
2022-02-02T16:17:55-0500

 To proof: 11!+22!++nn!=(n+1)!1 for every positive integer n. PROOF BY INDUCTION:  Let P(n) be 11!+22!++nn!=(n+1)!1 Basis step n=111!+22!++nn!=11!=11=1(n+1)!1=(1+1)!1=2!1=21=1 We then note P(1) is true.  Induction step: Let P(k) be true. 11!+22!++kk!=(k+1)!1 We need to prove that P(k+1) is also true. \begin{aligned} &\text { To proof: } 1 \cdot 1 !+2 \cdot 2 !+\ldots+n \cdot n !=(n+1) !-1 \text { for every positive integer } n . \\ &\text { PROOF BY INDUCTION: } \\ &\text { Let } P(n) \text { be } 1 \cdot 1 !+2 \cdot 2 !+\ldots+n \cdot n !=(n+1) !-1 \\ &\text { Basis step } n=1 \\ &1 \cdot 1 !+2 \cdot 2 !+\ldots+n \cdot n !=1 \cdot 1 !=1 \cdot 1=1 \\ &(n+1) !-1=(1+1) !-1=2 !-1=2-1=1 \\ &\text { We then note } P(1) \text { is true. } \\ &\text { Induction step: Let } P(k) \text { be true. } \\ &1 \cdot 1 !+2 \cdot 2 !+\ldots+k \cdot k !=(k+1) !-1 \\ &\text { We need to prove that } P(k+1) \text { is also true. } \end{aligned}

11!+22!++kk!+(k+1)(k+1)!=(k+1)!1+(k+1)(k+1)!=1(k+1)!+(k+1)(k+1)!1=(1+k+1)(k+1)!1=(k+2)(k+1)!1=(k+2)!1=((k+1)+1)!1\begin{aligned} &1 \cdot 1 !+2 \cdot 2 !+\ldots+k \cdot k !+(k+1) \cdot(k+1) ! \\ &=(k+1) !-1+(k+1) \cdot(k+1) ! \\ &=1 \cdot(k+1) !+(k+1) \cdot(k+1) !-1 \\ &=(1+k+1)(k+1) !-1 \\ &=(k+2)(k+1) !-1 \\ &=(k+2) !-1 \\ &=((k+1)+1) !-1 \end{aligned}

We then note that P(k+1)P(k+1) is also true.

Conclusion By the principle of mathematical induction, P(n)P(n) is true for all positive integers nn .

Thus, 11!+22!++nn!=(n+1)!11·1 ! + 2·2!+· ··+ n · n! = (n+1)!-1 whenever n is a positive integer.

Hence Proved



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS