Answer to Question #289726 in Discrete Mathematics for Netu

Question #289726

Given the following 2 premises, 1. 𝑝 → (𝑞 ∨ 𝑟) 2. 𝑞 → 𝑠 Prove 𝑝 → (𝑟 ∨ 𝑠) is valid using the Proof by Contradiction method. 


1
Expert's answer
2022-01-31T17:59:24-0500

Solution:

Proof by Contradiction Method:


  1. p(qr)p\rightarrow (q\lor r) Premise
  2. qsq\rightarrow s Premise
  3. ¬(p(rs))\neg (p\rightarrow (r\lor s)) Premise, proof by contradiction
  4. ¬(¬p(rs))\neg (\neg p\lor (r\lor s)) 3, Definition of \rightarrow
  5. p¬(rs)p\land \neg (r\lor s) 4, DeMorgan’s law
  6. pp 5, Specialization
  7. ¬(rs)\neg (r\lor s) 5, Specialization
  8. ¬r¬s\neg r\land \neg s 7, DeMorgan’s law
  9. ¬r\neg r 8, Specialization
  10. ¬s\neg s 8, Specialization
  11. ¬q\neg q 2, 10, Modus Tollens
  12. ¬q¬r\neg q\land \neg r 9, 11
  13. ¬(qr)\neg (q\lor r) 12, DeMorgan’s law
  14. ¬p\neg p 1, 13, Modus Tollens
  15. False 6, 14, proof by contradiction


Premise ¬(p(rs))\neg (p\rightarrow (r\lor s)) was false, so p(rs)p\rightarrow (r\lor s) must be true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment