Answer to Question #289726 in Discrete Mathematics for Netu

Question #289726

Given the following 2 premises, 1. 𝑝 → (𝑞 ∨ 𝑟) 2. 𝑞 → 𝑠 Prove 𝑝 → (𝑟 ∨ 𝑠) is valid using the Proof by Contradiction method. 


1
Expert's answer
2022-01-31T17:59:24-0500

Solution:

Proof by Contradiction Method:


  1. "p\\rightarrow (q\\lor r)" Premise
  2. "q\\rightarrow s" Premise
  3. "\\neg (p\\rightarrow (r\\lor s))" Premise, proof by contradiction
  4. "\\neg (\\neg p\\lor (r\\lor s))" 3, Definition of "\\rightarrow"
  5. "p\\land \\neg (r\\lor s)" 4, DeMorgan’s law
  6. "p" 5, Specialization
  7. "\\neg (r\\lor s)" 5, Specialization
  8. "\\neg r\\land \\neg s" 7, DeMorgan’s law
  9. "\\neg r" 8, Specialization
  10. "\\neg s" 8, Specialization
  11. "\\neg q" 2, 10, Modus Tollens
  12. "\\neg q\\land \\neg r" 9, 11
  13. "\\neg (q\\lor r)" 12, DeMorgan’s law
  14. "\\neg p" 1, 13, Modus Tollens
  15. False 6, 14, proof by contradiction


Premise "\\neg (p\\rightarrow (r\\lor s))" was false, so "p\\rightarrow (r\\lor s)" must be true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS