Question #289342



Show that if A, B, and C are sets, then A ∩ B ∩ C = A ∪ B ∪ C


•by showing each side is a subset of the other side.


•using a membership table.

1
Expert's answer
2022-01-24T15:03:18-0500

To show that ABC=ABC\overline{A\cap B\cap C}=\overline{A}\cup \overline{B}\cup \overline{C}

Let xABCx \in \overline{A\cup B\cup C}

xU and xABCxU and xA or xB or xCxU and xA or xU and xB or xU and xCxA or xB or xCxABC    ABCABCx \in U \text{ and } x \notin A \cap B \cap C\\ x \in U \text{ and } x \notin A \text{ or } x \notin B \text{ or } x \notin C\\ x \in U \text{ and } x \notin A \text{ or } x \in U \text{ and } x \notin B \text{ or } x \in U \text{ and } x \notin C\\ x\in \overline{A} \text{ or } x\in \overline{B} \text{ or } x\in \overline{C} \\ x\in \overline{A} \cup \overline{B} \cup \overline{C}\\ \implies \overline{A\cup B\cup C} \subseteq \overline{A} \cup \overline{B} \cup \overline{C}

Conversely,

Let xABCx \in \overline{A} \cup \overline{B} \cup \overline{C}

xA or xB or xCxU and xA or xU and xB or xU and xCxU and xA or xB or xCxU and xABCxABC    ABCABCx \in \overline{A} \text{ or } x \in \overline{B} \text{ or } x \in \overline{C} \\ x \in U \text{ and } x \notin A \text{ or } x \in U \text{ and } x \notin B \text{ or } x \in U \text{ and } x \notin C\\ x \in U \text{ and } x \notin A \text{ or } x \notin B \text{ or } x \notin C\\ x \in U \text{ and } x \notin A \cap B \cap C\\ x \in \overline{A\cup B\cup C}\\ \implies \overline{A} \cup \overline{B} \cup \overline{C}\subseteq \overline{A\cup B\cup C}

Hence,


ABC=ABC\overline{A\cap B\cap C}=\overline{A}\cup \overline{B}\cup \overline{C}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS