Show that if A, B, and C are sets, then A ∩ B ∩ C = A ∪ B ∪ C
by showing each side is a subset of the other side.
using a membership table.
To show that "\\overline{A\\cap B\\cap C}=\\overline{A}\\cup \\overline{B}\\cup \\overline{C}"
Let "x \\in \\overline{A\\cup B\\cup C}"
"x \\in U \\text{ and } x \\notin A \\cap B \\cap C\\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\notin B \\text{ or } x \\notin C\\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\in U \\text{ and } x \\notin B \\text{ or } x \\in U \\text{ and } x \\notin C\\\\\nx\\in \\overline{A} \\text{ or } x\\in \\overline{B} \\text{ or } x\\in \\overline{C} \\\\\nx\\in \\overline{A} \\cup \\overline{B} \\cup \\overline{C}\\\\\n\\implies \\overline{A\\cup B\\cup C} \\subseteq \\overline{A} \\cup \\overline{B} \\cup \\overline{C}"
Conversely,
Let "x \\in \\overline{A} \\cup \\overline{B} \\cup \\overline{C}"
"x \\in \\overline{A} \\text{ or } x \\in \\overline{B} \\text{ or } x \\in \\overline{C} \\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\in U \\text{ and } x \\notin B \\text{ or } x \\in U \\text{ and } x \\notin C\\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\notin B \\text{ or } x \\notin C\\\\\nx \\in U \\text{ and } x \\notin A \\cap B \\cap C\\\\\nx \\in \\overline{A\\cup B\\cup C}\\\\\n\\implies \\overline{A} \\cup \\overline{B} \\cup \\overline{C}\\subseteq \\overline{A\\cup B\\cup C}"
Hence,
"\\overline{A\\cap B\\cap C}=\\overline{A}\\cup \\overline{B}\\cup \\overline{C}"
Comments
Leave a comment