Answer to Question #289236 in Discrete Mathematics for Arjun

Question #289236

Show that if A, B, and C are sets, then A ∩ B ∩ C = A ∪ B ∪ C


by showing each side is a subset of the other side.


using a membership table.



1
Expert's answer
2022-01-21T14:30:12-0500

To show that "\\overline{A\\cap B\\cap C}=\\overline{A}\\cup \\overline{B}\\cup \\overline{C}"

Let "x \\in \\overline{A\\cup B\\cup C}"

"x \\in U \\text{ and } x \\notin A \\cap B \\cap C\\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\notin B \\text{ or } x \\notin C\\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\in U \\text{ and } x \\notin B \\text{ or } x \\in U \\text{ and } x \\notin C\\\\\nx\\in \\overline{A} \\text{ or } x\\in \\overline{B} \\text{ or } x\\in \\overline{C} \\\\\nx\\in \\overline{A} \\cup \\overline{B} \\cup \\overline{C}\\\\\n\\implies \\overline{A\\cup B\\cup C} \\subseteq \\overline{A} \\cup \\overline{B} \\cup \\overline{C}"

Conversely,

Let "x \\in \\overline{A} \\cup \\overline{B} \\cup \\overline{C}"

"x \\in \\overline{A} \\text{ or } x \\in \\overline{B} \\text{ or } x \\in \\overline{C} \\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\in U \\text{ and } x \\notin B \\text{ or } x \\in U \\text{ and } x \\notin C\\\\\nx \\in U \\text{ and } x \\notin A \\text{ or } x \\notin B \\text{ or } x \\notin C\\\\\nx \\in U \\text{ and } x \\notin A \\cap B \\cap C\\\\\nx \\in \\overline{A\\cup B\\cup C}\\\\\n\\implies \\overline{A} \\cup \\overline{B} \\cup \\overline{C}\\subseteq \\overline{A\\cup B\\cup C}"

Hence,

"\\overline{A\\cap B\\cap C}=\\overline{A}\\cup \\overline{B}\\cup \\overline{C}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS