Question #287012

an + an-1 - 10an-2 + 8an-3


1
Expert's answer
2022-01-13T10:22:30-0500

Since, given question is incomplete, so we assume as follows:

Consider the recurrence relation an=an1+6.an2,n2,a0=3,a1=6a_{n}=a_{n-1}+6 . a_{n-2}, \quad n \geq 2, a_{0}=3, a_{1}=6 The characteristic equation is r2r6=0r^{2}-r-6=0 .

r2r6=0r23r+2r6=0r(r3)+2(r3)=0(r3)(r+2)=0r=3,2\begin{array}{r} r^{2}-r-6=0 \\ r^{2}-3 r+2 r-6=0 \\ r(r-3)+2(r-3)=0 \\ (r-3)(r+2)=0 \\ r=3,-2 \end{array}

The roots of the characteristic equation are r_{1}=3, r_{2}=-2.

For n=0 the solution of the recurrence relation is,

a0=α1r10+α2r203=α1(3)0+α2(2)03=α1+α2 ...(1) As a0=3\begin{array}{ll} a_{0} & =\alpha_{1} r_{1}^{0}+\alpha_{2} r_{2}^{0} \\ 3 & =\alpha_{1}(3)^{0}+\alpha_{2}(-2)^{0} \\ 3 & =\alpha_{1}+\alpha_{2} \ ...(1) \end{array} \quad \text { As } a_{0}=3

For n=1 the solution of the recurrence relation is,

a1=α1(r1)1+α2(r2)16=α1(3)1+α2(2)16=3α12α2 ...(2) As a1=6\begin{array}{ll} a_{1} & =\alpha_{1} \cdot\left(r_{1}\right)^{1}+\alpha_{2}\left(r_{2}\right)^{1} \\ 6 & =\alpha_{1} \cdot(3)^{1}+\alpha_{2}(-2)^{1} \\ 6 & =3 \alpha_{1}-2 \alpha_{2}\ ...(2) \end{array} \quad \text { As } a_{1}=6

Solve equation (1) and (2) to find the values of α1,α2\alpha_{1}, \alpha_{2} .

Multiply equation (1) by 2 and add equation (1) and (2).

6=2α1+2α26=3α12α212=5α1α1=125\begin{aligned} 6 &=2 \alpha_{1}+2 \alpha_{2} \\ 6 &=3 \alpha_{1}-2 \alpha_{2} \\ 12 &=5 \alpha_{1} \\ \alpha_{1} &=\frac{12}{5} \end{aligned}

Thus, the value of α2\alpha_{2} is,

125+α2=3α2=35\begin{array}{r} \frac{12}{5}+\alpha_{2}=3 \\ \alpha_{2}=\frac{3}{5} \end{array}

Therefore, the solution of the recurrence relation is,

an=α1r1n+α2r2n=(125)(3)n+(35)(2)n\begin{aligned} a_{n} &=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n} \\ &=\left(\frac{12}{5}\right)(3)^{n}+\left(\frac{3}{5}\right)(-2)^{n} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS