State TRUE or FALSE justifying your answer with proper reason.
a. 2π^2 + 1 = π(π^2 )
b. π^2 (1 + βπ) = π(π^2 )
c. π^2 (1 + βπ) = π(π^2 log π)
d. 3π^2 + βπ = π(π + πβπ + βπ)
e. βπ log π = π(π)
a.
True
"2\ud835\udc5b^2 + 1\\le 3n^2"
b.
False
"\\displaystyle \\lim_{n\\to \\infin} \\frac{\ud835\udc5b^2 (1 + \\sqrt\ud835\udc5b) }{n^2}=\\infin"
c.
False
"\\displaystyle \\lim_{n\\to \\infin} \\frac{\ud835\udc5b^2 (1 + \\sqrt\ud835\udc5b) }{n^2logn}=\\infin"
d.
False
"\\displaystyle \\lim_{n\\to \\infin} \\frac{ 3\ud835\udc5b^2 + \\sqrt\ud835\udc5b) }{\ud835\udc5b + \ud835\udc5b\\sqrt\ud835\udc5b + \\sqrt\ud835\udc5b}=\\infin"
e.
True
"\\sqrt\ud835\udc5b log \ud835\udc5b\\le n"
Comments
Leave a comment