Answer to Question #286778 in Discrete Mathematics for Riya

Question #286778

State TRUE or FALSE justifying your answer with proper reason.



a. 2𝑛^2 + 1 = 𝑂(𝑛^2 )



b. 𝑛^2 (1 + βˆšπ‘›) = 𝑂(𝑛^2 )



c. 𝑛^2 (1 + βˆšπ‘›) = 𝑂(𝑛^2 log 𝑛)



d. 3𝑛^2 + βˆšπ‘› = 𝑂(𝑛 + π‘›βˆšπ‘› + βˆšπ‘›)



e. βˆšπ‘› log 𝑛 = 𝑂(𝑛)

1
Expert's answer
2022-01-24T16:13:54-0500

a.

True

"2\ud835\udc5b^2 + 1\\le 3n^2"


b.

False

"\\displaystyle \\lim_{n\\to \\infin} \\frac{\ud835\udc5b^2 (1 + \\sqrt\ud835\udc5b) }{n^2}=\\infin"


c.

False

"\\displaystyle \\lim_{n\\to \\infin} \\frac{\ud835\udc5b^2 (1 + \\sqrt\ud835\udc5b) }{n^2logn}=\\infin"


d.

False

"\\displaystyle \\lim_{n\\to \\infin} \\frac{ 3\ud835\udc5b^2 + \\sqrt\ud835\udc5b) }{\ud835\udc5b + \ud835\udc5b\\sqrt\ud835\udc5b + \\sqrt\ud835\udc5b}=\\infin"


e.

True

"\\sqrt\ud835\udc5b log \ud835\udc5b\\le n"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS