State TRUE or FALSE justifying your answer with proper reason.
a. 2𝑛^2 + 1 = 𝑂(𝑛^2 )
b. 𝑛^2 (1 + √𝑛) = 𝑂(𝑛^2 )
c. 𝑛^2 (1 + √𝑛) = 𝑂(𝑛^2 log 𝑛)
d. 3𝑛^2 + √𝑛 = 𝑂(𝑛 + 𝑛√𝑛 + √𝑛)
e. √𝑛 log 𝑛 = 𝑂(𝑛)
a.
True
2𝑛2+1≤3n22𝑛^2 + 1\le 3n^22n2+1≤3n2
b.
False
limn→∞𝑛2(1+𝑛)n2=∞\displaystyle \lim_{n\to \infin} \frac{𝑛^2 (1 + \sqrt𝑛) }{n^2}=\infinn→∞limn2n2(1+n)=∞
c.
limn→∞𝑛2(1+𝑛)n2logn=∞\displaystyle \lim_{n\to \infin} \frac{𝑛^2 (1 + \sqrt𝑛) }{n^2logn}=\infinn→∞limn2lognn2(1+n)=∞
d.
limn→∞3𝑛2+𝑛)𝑛+𝑛𝑛+𝑛=∞\displaystyle \lim_{n\to \infin} \frac{ 3𝑛^2 + \sqrt𝑛) }{𝑛 + 𝑛\sqrt𝑛 + \sqrt𝑛}=\infinn→∞limn+nn+n3n2+n)=∞
e.
𝑛log𝑛≤n\sqrt𝑛 log 𝑛\le nnlogn≤n
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments