Question #286384

prove a --> ( b V c ) using contradiction method and combination of inference rules and equivalence laws from these premises : 1. a --> ( d V b ) 2. d --> c

1
Expert's answer
2022-02-16T07:02:02-0500

Let us prove using the method by contradiction.

Suppose that the premises a(db)a \to ( d \lor b ) and dcd \to c are true, but the conclusion a(bc)a \to( b \lor c ) is false.

The definition of implication implies aa is true and bcb\lor c is false, and hence definition of disjunction implies bb is false and cc is false. Since dcd \to c is true and cc is false, we conclude that dd is false. Consequently, dbd\lor b is false, and thus a(db)a \to ( d \lor b ) is false. This contradiction proves the premises a(db)a \to ( d \lor b ) and dcd \to c imply the conclusion a(bc).a \to( b \lor c ).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS