Answer to Question #286384 in Discrete Mathematics for May

Question #286384

prove a --> ( b V c ) using contradiction method and combination of inference rules and equivalence laws from these premises : 1. a --> ( d V b ) 2. d --> c

1
Expert's answer
2022-02-16T07:02:02-0500

Let us prove using the method by contradiction.

Suppose that the premises "a \\to ( d \\lor b )" and "d \\to c" are true, but the conclusion "a \\to( b \\lor c )" is false.

The definition of implication implies "a" is true and "b\\lor c" is false, and hence definition of disjunction implies "b" is false and "c" is false. Since "d \\to c" is true and "c" is false, we conclude that "d" is false. Consequently, "d\\lor b" is false, and thus "a \\to ( d \\lor b )" is false. This contradiction proves the premises "a \\to ( d \\lor b )" and "d \\to c" imply the conclusion "a \\to( b \\lor c )."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS