Construct a relation on the set {a, b, c, d} that is
a. reflexive, symmetric, but not transitive.
b. irreflexive, symmetric, and transitive.
c. irreflexive, antisymmetric, and not transitive.
d. reflexive, neither symmetric nor antisymmetric, and transitive.
a. "R = \\{ (a,a),\\,(b,b),\\,(c,c),\\,(d,d),\\,(a,b),\\,(b,a)\\,(a,c),\\,(c,a),\\,\\,(b,c),(c,b),\\,(b,d),\\,(d,b)\\}"
For any "x \\in \\{ a,b,c,d\\}" "(x,x) \\in R" , so, R is reflexive.
For any "x,y \\in \\{ a,b,c,d\\}" if "(x,y) \\in R" then "(y,x) \\in R" , so, R is symmetric.
"(a,b) \\in R,\\,(b,d) \\in R" , but "(a,d) \\notin R" , so, R is not transitive.
b. Let R is this relation.
Since R is symmetric then for any "x,y \\in \\{ a,b,c,d\\}" if "(x,y) \\in R" then "(y,x) \\in R".
But then (since R is transitive) "(x,x)\u2208R" . But then R isn't irreflexive, which contradicts the condition, therefore, such a relation does not exist.
c. "R = \\{ (a,b),\\,(a,c),\\,(b,d)\\}"
For any "x \\in \\{ a,b,c,d\\}" "(x,x) \\notin R" , so, R is irreflexive.
For any "x,y \\in \\{ a,b,c,d\\}" if "(x,y) \\in R" then "(y,x) \\notin R" , so, R is antisymmetric.
"(a,b) \\in R,\\,(b,d) \\in R" , but "(a,d) \\notin R" , so, R is not transitive.
d. "R = \\{ (a,a),\\,(b,b),\\,(c,c),\\,(d,d),\\,(a,b),(b,a),\\,(a,c)\\}"
For any "x \\in \\{ a,b,c,d\\}" "(x,x) \\in R" , so, R is reflexive.
"(a,b) \\in R,\\,(b,a) \\in R" , so R isn't antisymmetric, "(a,c) \\in R,\\,(c,a) \\notin R" so R isn't symmetric.
for any "x,y,z \\in \\{ a,b,c,d\\}" "(x,y) \\in R \\wedge (y,z) \\in R \\Rightarrow (x,z) \\in R" , so, R is transitive.
Comments
Leave a comment