A committee of 8 is to be formed from 16 men and 10 women.
In how many ways can the committee be formed if
i) there are no restrictions.
ii) there must be 4 men and 4 women.
iii) there should be an even number of women.
iv) there are more women than men.
v) there are atleast 6 men.
i) there are no restrictions:
"n\\raisebox{0.25em}{$C$}r=\\frac{n!}{r!(n-r)!}"
"26\\raisebox{0.25em}{$C$}8=\\frac{26!}{8!(26-8)!}=\\frac{26!}{8!\\times18!}=1562275"
ii) there must be 4 men and 4 women:
"(16\\raisebox{0.25em}{$C$}4)(10\\raisebox{0.25em}{$C$}4)=(\\frac{16!}{4!(16-4)!})(\\frac{10!}{4!(10-4)!})"
"(16\\raisebox{0.25em}{$C$}4)(10\\raisebox{0.25em}{$C$}4)=(\\frac{16!}{4!\\times12!})(\\frac{10!}{4!\\times6!})=382200"
iii) there should be an even number of women:
"=(16\\raisebox{0.25em}{$C$}6)(10\\raisebox{0.25em}{$C$}2)+(16\\raisebox{0.25em}{$C$}4)(10\\raisebox{0.25em}{$C$}4)+(16\\raisebox{0.25em}{$C$}2)(10\\raisebox{0.25em}{$C$}6)+(16\\raisebox{0.25em}{$C$}0)(10\\raisebox{0.25em}{$C$}8)"
"=(\\frac{16!}{6!(16-6)!})(\\frac{10!}{4!(10-4)!})+(\\frac{16!}{4!(16-4)!})(\\frac{10!}{4!(10-4)!})+(\\frac{16!}{2!(16-2)!})(\\frac{10!}{6!(10-6)!})+(\\frac{16!}{0!(16-0)!})(\\frac{10!}{8!(10-8)!})"
"=(\\frac{16!}{6!(10)!})(\\frac{10!}{4!(6)!})+(\\frac{16!}{4!(12)!})(\\frac{10!}{4!(6)!})+(\\frac{16!}{2!(14)!})(\\frac{10!}{6!(4)!})+(\\frac{16!}{0!(16)!})(\\frac{10!}{8!(2)!})"
"=360360+382200+25200+45=767805"
iv) there are more women than men:
"=(16\\raisebox{0.25em}{$C$}0)(10\\raisebox{0.25em}{$C$}8)+(16\\raisebox{0.25em}{$C$}1)(10\\raisebox{0.25em}{$C$}7)+(16\\raisebox{0.25em}{$C$}2)(10\\raisebox{0.25em}{$C$}6)+(16\\raisebox{0.25em}{$C$}3)(10\\raisebox{0.25em}{$C$}5)"
"=(\\frac{16!}{0!(16-0)!})(\\frac{10!}{8!(10-8)!})+(\\frac{16!}{1!(16-1)!})(\\frac{10!}{7!(10-7)!})+(\\frac{16!}{2!(16-2)!})(\\frac{10!}{6!(10-6)!})+(\\frac{16!}{3!(16-3)!})(\\frac{10!}{5!(10-5)!})"
"=(\\frac{16!}{!0(16)!})(\\frac{10!}{8!(2)!})+(\\frac{16!}{1!(15)!})(\\frac{10!}{7!(1)!})+(\\frac{16!}{2!(14)!})(\\frac{10!}{6!(4)!})+(\\frac{16!}{3!(13)!})(\\frac{10!}{5!(5)!})"
"=45+1920+25200+141120=168285"
v) there are atleast 6 men:
"=(16\\raisebox{0.25em}{$C$}6)(10\\raisebox{0.25em}{$C$}2)+(16\\raisebox{0.25em}{$C$}7)(10\\raisebox{0.25em}{$C$}1)+(16\\raisebox{0.25em}{$C$}8)(10\\raisebox{0.25em}{$C$}0)"
"=(\\frac{16!}{6!(16-6)!})(\\frac{10!}{2!(10-2)!})+(\\frac{16!}{7!(16-7)!})(\\frac{10!}{1!(10-1)!})+(\\frac{16!}{8!(16-8)!})(\\frac{10!}{0!(10-0)!})"
"=(\\frac{16!}{6!(10)!})(\\frac{10!}{2!(8)!})+(\\frac{16!}{7!(9)!})(\\frac{10!}{1!(9)!})+(\\frac{16!}{8!(8)!})(\\frac{10!}{0!(10)!})"
"=360360+114400+12870=487630"
Comments
Leave a comment