Question #283477

 Let an denote the number of surjective (onto) functions f : {1, 2, . . . , n} −→

{1, 2, 3} such that f(1) < f(2). Give a Θ estimate for an.


1
Expert's answer
2021-12-30T17:14:51-0500

number of surjective functions f:[k][n]f:[k]\to[n] :

N=i=0n(ni)(1)i(ni)kN=\displaystyle \sum_{i=0}^n \begin{pmatrix} n \\ i \end{pmatrix}(-1)^i(n-i)^k


in our case:

N=i=0n(3i)(1)i(3i)n=3n32n+3N=\displaystyle \sum_{i=0}^n \begin{pmatrix} 3 \\ i \end{pmatrix}(-1)^i(3-i)^n=3^n-3\cdot2^n+3


minimum number of function such that f(1) > f(2) is 0

maximum number of function such that f(1) > f(2) is 3:

f(2)=1,f(2)=2,f(1)=3f(2)=1,f(2)=2,f(1)=3


so, θ\theta estimate for an :

N3anNN-3\le a_n \le N

3n32n<an<3n32n+33^n-3\cdot2^n<a_n<3^n-3\cdot2^n+3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS