Let an denote the number of surjective (onto) functions f : {1, 2, . . . , n} −→
{1, 2, 3} such that f(1) < f(2). Give a Θ estimate for an.
number of surjective functions "f:[k]\\to[n]" :
"N=\\displaystyle \\sum_{i=0}^n \\begin{pmatrix}\n n \\\\\n i\n\\end{pmatrix}(-1)^i(n-i)^k"
in our case:
"N=\\displaystyle \\sum_{i=0}^n \\begin{pmatrix}\n 3 \\\\\n i\n\\end{pmatrix}(-1)^i(3-i)^n=3^n-3\\cdot2^n+3"
minimum number of function such that f(1) > f(2) is 0
maximum number of function such that f(1) > f(2) is 3:
"f(2)=1,f(2)=2,f(1)=3"
so, "\\theta" estimate for an :
"N-3\\le a_n \\le N"
"3^n-3\\cdot2^n<a_n<3^n-3\\cdot2^n+3"
Comments
Leave a comment