Question #273745

A magic square is an arrangement of n2 numbers into n rows and n columns using distinct numbers from 1 up to n2 such that the sum in any row, any column or any of the two diagonals is fixed. Consider the 4 by 4 magic square below:


a1 a5 2 13a2 10 11 a7a3 6 a4 124 15 a6 1
What is the value of a1 ?

1
Expert's answer
2021-12-01T13:56:07-0500

Calculate the magic constant


sum=n[(n2+1)/2]sum=n[(n^2+1)/2]

sum=4[(42+1)/2]=34sum=4[(4^2+1)/2]=34

a1a5213a21011a7a36a412415a61\def\arraystretch{1.5} \begin{array}{c:c:c:c} a_1 & a_5 & 2 & 13 \\ \hline a_2 & 10 & 11 & a_7 \\ \hline a_3 & 6 & a_4 & 12 \\ \hline 4 & 15 & a_6 & 1 \\ \end{array}

a5+10+6+15=34=>a5=3a_5+10+6+15=34=>a_5=3

a1+3+2+13=34=>a1=16a_1+3+2+13=34=>a_1=16

16+10+a4+1=34=>a4=716+10+a_4+1=34=>a_4=7

a3+6+7+12=34=>a3=9a_3+6+7+12=34=>a_3=9

16+a2+9+4=34=>a2=516+a_2+9+4=34=>a_2=5

5+10+11+a7=34=>a7=85+10+11+a_7=34=>a_7=8

4+15+a6+1=34=>a6=144+15+a_6+1=34=>a_6=14

16321351011896712415141\def\arraystretch{1.5} \begin{array}{c:c:c:c} 16 & 3 & 2 & 13 \\ \hline 5 & 10 & 11 & 8 \\ \hline 9 & 6 & 7 & 12 \\ \hline 4 & 15 & 14 & 1 \\ \end{array}

a1=16a_1=16


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS