Use generating functions to solve the recurrence relation an = 7an−1 −
16an−2 + 12an−3 + n4n
, where a0 = −2, a1 = 0, a2 = 5.
generating function:
"a(x)=\\sum a_nx^n"
"\\displaystyle\\sum_{n=3}^{\\infin} (a_n -7a_{n\u22121} +16a_{n\u22122} - 12a_{n\u22123})x^n=\\displaystyle\\sum_{n=3}^{\\infin} n4^nx^n"
"\\displaystyle\\sum_{n=3}^{\\infin}a_nx^n=a(x)-a_0-a_1x-a_2x^2=a(x)+2-5x^2"
"\\displaystyle\\sum_{n=3}^{\\infin}7a_{n-1}x^n=7x\\displaystyle\\sum_{n=3}^{\\infin}a_{n-1}x^{n-1}=7x(a(x)-a_0-a_1x)=7x(a(x)+2)"
"\\displaystyle\\sum_{n=3}^{\\infin}16a_{n-2}x^n=16x^2\\displaystyle\\sum_{n=3}^{\\infin}a_{n-2}x^{n-2}=16x^2(a(x)-a_0)=16x^2(a(x)+2)"
"\\displaystyle\\sum_{n=3}^{\\infin}12a_{n-3}x^n=12x^3\\displaystyle\\sum_{n=3}^{\\infin}a_{n-3}x^{n-3}=12x^3a(x)"
"\\displaystyle\\sum_{n=3}^{\\infin} (a_n -7a_{n\u22121} +16a_{n\u22122} - 12a_{n\u22123})x^n="
"=a(x)+2-5x^2-7x(a(x)+2)+16x^2(a(x)+2)-12x^3a(x)="
"=a(x)(1-7x+16x^2-12x^3)-14x+25x^2-12x^3+2"
"\\displaystyle\\sum_{n=3}^{\\infin} n4^nx^n=\\frac{x}{(1-4x)^2}"
"a(x)=\\frac{x}{(1-7x+16x^2-12x^3)(1-4x)^2}+\\frac{14x+25x^2-12x^3+2}{1-7x+16x^2-12x^3}"
"a(x)=\\frac{6}{2x-1}+\\frac{-1}{(2x-1)^2}+\\frac{24}{4x-1}+\\frac{4}{(4x-1)^2}+\\frac{-27}{3x-1}+\\frac{325}{2(2x-1)}+\\frac{-55}{2(2x-1)^2}+\\frac{647}{4x-1}+\\frac{110}{(4x-1)^2}+"
"+\\frac{-729}{3x-1}"
"a(x)=\\frac{337}{2(2x-1)}-\\frac{57}{2(2x-1)^2}+\\frac{671}{4x-1}+\\frac{114}{(4x-1)^2}-\\frac{756}{3x-1}"
"a(x)=-\\frac{337}{2}\\displaystyle\\sum_{n=0}^{\\infin} 2^nx^n -671\\displaystyle\\sum_{n=0}^{\\infin} 4^nx^n+756\\displaystyle\\sum_{n=0}^{\\infin} 3^nx^n-\\frac{57}{2}\\displaystyle\\sum_{n=0}^{\\infin} \\begin{pmatrix}\n n+1 \\\\\n n \n\\end{pmatrix}2^nx^n+"
"+114\\displaystyle\\sum_{n=0}^{\\infin} \\begin{pmatrix}\n n+1 \\\\\n n \n\\end{pmatrix}4^nx^n"
"a_n=-\\frac{337}{2}2^n-671\\cdot4^n+756\\cdot3^n-\\frac{57}{2}(n+1)2^n+114(n+1)4^n"
Comments
Leave a comment