Answer to Question #273692 in Discrete Mathematics for kool

Question #273692

Use generating functions to solve the recurrence relation an = 7an−1 −

16an−2 + 12an−3 + n4n

, where a0 = −2, a1 = 0, a2 = 5.


1
Expert's answer
2021-12-02T17:45:37-0500

generating function:

a(x)=anxna(x)=\sum a_nx^n

n=3(an7an1+16an212an3)xn=n=3n4nxn\displaystyle\sum_{n=3}^{\infin} (a_n -7a_{n−1} +16a_{n−2} - 12a_{n−3})x^n=\displaystyle\sum_{n=3}^{\infin} n4^nx^n


n=3anxn=a(x)a0a1xa2x2=a(x)+25x2\displaystyle\sum_{n=3}^{\infin}a_nx^n=a(x)-a_0-a_1x-a_2x^2=a(x)+2-5x^2


n=37an1xn=7xn=3an1xn1=7x(a(x)a0a1x)=7x(a(x)+2)\displaystyle\sum_{n=3}^{\infin}7a_{n-1}x^n=7x\displaystyle\sum_{n=3}^{\infin}a_{n-1}x^{n-1}=7x(a(x)-a_0-a_1x)=7x(a(x)+2)


n=316an2xn=16x2n=3an2xn2=16x2(a(x)a0)=16x2(a(x)+2)\displaystyle\sum_{n=3}^{\infin}16a_{n-2}x^n=16x^2\displaystyle\sum_{n=3}^{\infin}a_{n-2}x^{n-2}=16x^2(a(x)-a_0)=16x^2(a(x)+2)


n=312an3xn=12x3n=3an3xn3=12x3a(x)\displaystyle\sum_{n=3}^{\infin}12a_{n-3}x^n=12x^3\displaystyle\sum_{n=3}^{\infin}a_{n-3}x^{n-3}=12x^3a(x)


n=3(an7an1+16an212an3)xn=\displaystyle\sum_{n=3}^{\infin} (a_n -7a_{n−1} +16a_{n−2} - 12a_{n−3})x^n=


=a(x)+25x27x(a(x)+2)+16x2(a(x)+2)12x3a(x)==a(x)+2-5x^2-7x(a(x)+2)+16x^2(a(x)+2)-12x^3a(x)=


=a(x)(17x+16x212x3)14x+25x212x3+2=a(x)(1-7x+16x^2-12x^3)-14x+25x^2-12x^3+2


n=3n4nxn=x(14x)2\displaystyle\sum_{n=3}^{\infin} n4^nx^n=\frac{x}{(1-4x)^2}


a(x)=x(17x+16x212x3)(14x)2+14x+25x212x3+217x+16x212x3a(x)=\frac{x}{(1-7x+16x^2-12x^3)(1-4x)^2}+\frac{14x+25x^2-12x^3+2}{1-7x+16x^2-12x^3}


a(x)=62x1+1(2x1)2+244x1+4(4x1)2+273x1+3252(2x1)+552(2x1)2+6474x1+110(4x1)2+a(x)=\frac{6}{2x-1}+\frac{-1}{(2x-1)^2}+\frac{24}{4x-1}+\frac{4}{(4x-1)^2}+\frac{-27}{3x-1}+\frac{325}{2(2x-1)}+\frac{-55}{2(2x-1)^2}+\frac{647}{4x-1}+\frac{110}{(4x-1)^2}+


+7293x1+\frac{-729}{3x-1}


a(x)=3372(2x1)572(2x1)2+6714x1+114(4x1)27563x1a(x)=\frac{337}{2(2x-1)}-\frac{57}{2(2x-1)^2}+\frac{671}{4x-1}+\frac{114}{(4x-1)^2}-\frac{756}{3x-1}


a(x)=3372n=02nxn671n=04nxn+756n=03nxn572n=0(n+1n)2nxn+a(x)=-\frac{337}{2}\displaystyle\sum_{n=0}^{\infin} 2^nx^n -671\displaystyle\sum_{n=0}^{\infin} 4^nx^n+756\displaystyle\sum_{n=0}^{\infin} 3^nx^n-\frac{57}{2}\displaystyle\sum_{n=0}^{\infin} \begin{pmatrix} n+1 \\ n \end{pmatrix}2^nx^n+


+114n=0(n+1n)4nxn+114\displaystyle\sum_{n=0}^{\infin} \begin{pmatrix} n+1 \\ n \end{pmatrix}4^nx^n


an=33722n6714n+7563n572(n+1)2n+114(n+1)4na_n=-\frac{337}{2}2^n-671\cdot4^n+756\cdot3^n-\frac{57}{2}(n+1)2^n+114(n+1)4^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment