group properties:
associativity:
(a∗b)∗c=(a+b+ab)∗c=a+b+ab+c+(a+b+ab)c=
=a+b+ab+c+ac+bc+abc
a∗(b∗c)=a∗(b+c+bc)=a+b+c+bc+a(b+c+bc)=
=a+b+c+bc+ab+ac+abc
(a∗b)∗c=a∗(b∗c)
unit element e:
e∗a=e+a+ae=a
e=0
inverse element b=a-1:
a∗b=a+b+ab=e=0
b=−a+1a
so, (𝐺, ∗) is a group
Comments