Question #271521

Given that 𝐺 = {𝑎 ∈ ℝ|𝑎 ≠ −1} and 𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 𝑎𝑏, show that (𝐺, ∗) is indeed a group.

1
Expert's answer
2021-11-26T16:28:03-0500

group properties:

associativity:

(ab)c=(𝑎+𝑏+𝑎𝑏)c=𝑎+𝑏+𝑎𝑏+c+(𝑎+𝑏+𝑎𝑏)c=(a*b)*c=(𝑎 + 𝑏 + 𝑎𝑏)*c=𝑎 + 𝑏 + 𝑎𝑏+c+(𝑎 + 𝑏 + 𝑎𝑏)c=

=𝑎+𝑏+𝑎𝑏+c+ac+bc+abc=𝑎 + 𝑏 + 𝑎𝑏+c+ac+bc+abc

a(bc)=a(b+c+bc)=a+b+c+bc+a(b+c+bc)=a*(b*c)=a*(b+c+bc)=a+b+c+bc+a (b+c+bc)=

=a+b+c+bc+ab+ac+abc=a+b+c+bc+ab+ac+abc

(ab)c=a(bc)(a*b)*c=a*(b*c)


unit element e:

ea=e+a+ae=ae*a=e+a+ae=a

e=0e=0


inverse element b=a-1:

ab=a+b+ab=e=0a*b=a+b+ab=e=0

b=aa+1b=-\frac{a}{a+1}


so, (𝐺, ∗) is a group


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS