Consider a recurrence relation an = an-1 - 3an-2 for n = 1,2,3,4,… with initial conditions a1 = 3 and a2 = 5. Calculate a5.
Let us consider a recurrence relation an=an−1−3an−2a_n = a_{n-1} - 3a_{n-2}an=an−1−3an−2 with initial conditions a1=3a_1 = 3a1=3 and a2=5.a_2 = 5.a2=5. Let us calculate a5.a_5.a5.
It follows that a3=a2−3a1=5−3⋅3=−4.a_3 = a_{2} - 3a_{1}=5-3\cdot 3=-4.a3=a2−3a1=5−3⋅3=−4. Then a4=a3−3a2=−4−3⋅5=−19.a_4 = a_{3} - 3a_{2}=-4-3\cdot5=-19.a4=a3−3a2=−4−3⋅5=−19.
We conclude that a5=a4−3a3=−19−3(−4)=−7.a_5 = a_{4} - 3a_{3}=-19-3(-4)=-7.a5=a4−3a3=−19−3(−4)=−7.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments