Let x and y be real numbers. Prove that, if 5x+y>11, then x>2 or y>1.
for x = y:
"6y>11\\implies y>11\/6 \\implies y>1"
for x > y:
"x=y+k,k>0"
"6x-k>11\\implies x>(11+k)\/6"
"6y+5k>11"
if "y\\le 1" then "k>1\\implies x>2"
for x < y:
"x=y-k,k>0"
"6x+k>11"
"6y-5k>11\\implies y>11\/6+5k\/6>1"
so, if 5x+y>11, then x>2 or y>1
Comments
Leave a comment