Construct a truth table for each of these compound propositions. [6 marks]
a) p ⊕ p b) p ⊕¬p
c) p ⊕¬q d) ¬p ⊕¬q
e) (p ⊕ q) ∨ (p ⊕¬q) f ) (p ⊕ q) ∧ (p ⊕¬q)
Let us construct the trush table for the following compound propositions:
a) "p \u2295 p"
"\\begin{array}{||c||c|c|c|c|c||}\n\\hline\\hline\np & p \u2295p \\\\\n\\hline\\hline\n0 & 0 \\\\\n\\hline\n1 & 0\\\\\n\n\\hline\\hline\n\\end{array}"
b) "p \u2295\\neg p"
"\\begin{array}{||c||c|c|c|c|c||}\n\\hline\\hline\np & \\neg p & p \u2295 \\neg p \\\\\n\\hline\\hline\n0 & 1 & 1 \\\\\n\\hline\n1 & 0 & 1\\\\\n\n\\hline\\hline\n\\end{array}"
c) "p \u2295\\neg q"
"\\begin{array}{||c|c||c|c|c|c||}\n\\hline\\hline\np & q & \\neg \ud835\udc5e & p \u2295\\neg q \\\\\n\\hline\\hline\n0 & 0 & 1 & 1 \\\\\n\\hline\n0 & 1 & 0 & 0\\\\\n\\hline\n1 & 0 & 1 & 0\\\\\n\\hline\n1 & 1 & 0 & 1\\\\\n\\hline\\hline\n\\end{array}"
d) "\\neg p \u2295\\neg q"
"\\begin{array}{||c|c||c|c|c|c||}\n\\hline\\hline\np & q & \\neg \ud835\udc5d& \\neg q & \\neg p \u2295\\neg q\\\\\n\\hline\\hline\n0 & 0 & 1 & 1 & 0\\\\\n\\hline\n0 & 1 & 1 & 0 & 1\\\\\n\\hline\n1 & 0 & 0 & 1 & 1\\\\\n\\hline\n1 & 1 & 0 & 0 & 0\\\\\n\\hline\\hline\n\\end{array}"
e) "(p \u2295 q) \u2228 (p \u2295\\neg q)"
"\\begin{array}{||c|c||c|c|c|c||}\n\\hline\\hline\np & q & \\neg q & p \u2295\\neg q & p \u2295 q & (p \u2295 q) \u2228 (p \u2295\\neg q) \\\\\n\\hline\\hline\n0 & 0 & 1 & 1 & 0 & 1\\\\\n\\hline\n0 & 1 & 0 & 0 & 1 & 1\\\\\n\\hline\n1 & 0 & 1 & 0 & 1 & 1\\\\\n\\hline\n1 & 1 & 0 & 1 & 0 &1\\\\\n\\hline\\hline\n\\end{array}"
f ) "(p \u2295 q) \\land (p \u2295\\neg q)"
"\\begin{array}{||c|c||c|c|c|c||}\n\\hline\\hline\np & q & \\neg q & p \u2295\\neg q & p \u2295 q & (p \u2295 q) \\land (p \u2295\\neg q) \\\\\n\\hline\\hline\n0 & 0 & 1 & 1 & 0 & 0\\\\\n\\hline\n0 & 1 & 0 & 0 & 1 & 0\\\\\n\\hline\n1 & 0 & 1 & 0 & 1 & 0\\\\\n\\hline\n1 & 1 & 0 & 1 & 0 &0\\\\\n\\hline\\hline\n\\end{array}"
Comments
Leave a comment