Suppose that p and q are any statements. By constructing the truth tables, show that the
statement ¬ (p V q) & (¬ p) ∧ (¬ q) are logically equivalent.
Let us construct the trush table for the formulas "\u00ac (p \\lor q)" and "(\u00ac p) \\land (\u00ac q) :"
"\\begin{array}{||c|c||c|c|c|c|c||}\n\\hline\\hline\np & q & p \\lor q & \u00ac p & \u00ac q & \u00ac (p \\lor q) & (\u00ac p) \\land (\u00ac q) \\\\\n\\hline\\hline\n0 & 0 & 0 & 1 & 1 & 1 & 1\\\\\n\\hline\n0 & 1 & 1 & 1 & 0 & 0 & 0\\\\\n\\hline\n1 & 0 & 1 & 0 & 1 & 0 & 0\\\\\n\\hline\n1 & 1 & 1 & 0 & 0 & 0 & 0\\\\\n\\hline\\hline\n\\end{array}"
Since the last two columns are coinside, the formulas "\u00ac (p \\lor q)" and "(\u00ac p) \\land (\u00ac q)" are logically equivalent.
Comments
Leave a comment