Suppose that p and q are any statements. By constructing the truth tables, show that the
statement ¬ (p V q) & (¬ p) ∧ (¬ q) are logically equivalent.
Let us construct the trush table for the formulas ¬(p∨q)¬ (p \lor q)¬(p∨q) and (¬p)∧(¬q):(¬ p) \land (¬ q) :(¬p)∧(¬q):
pqp∨q¬p¬q¬(p∨q)(¬p)∧(¬q)0001111011100010101001110000\begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & p \lor q & ¬ p & ¬ q & ¬ (p \lor q) & (¬ p) \land (¬ q) \\ \hline\hline 0 & 0 & 0 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 1 & 1 & 0 & 0 & 0\\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 0\\ \hline 1 & 1 & 1 & 0 & 0 & 0 & 0\\ \hline\hline \end{array}p0011q0101p∨q0111¬p1100¬q1010¬(p∨q)1000(¬p)∧(¬q)1000
Since the last two columns are coinside, the formulas ¬(p∨q)¬ (p \lor q)¬(p∨q) and (¬p)∧(¬q)(¬ p) \land (¬ q)(¬p)∧(¬q) are logically equivalent.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments