Question #265179

Suppose that p and q are any statements. By constructing the truth tables, show that the

statement ¬ (p V q) & (¬ p) ∧ (¬ q) are logically equivalent.


1
Expert's answer
2021-11-15T18:09:45-0500

Let us construct the trush table for the formulas ¬(pq)¬ (p \lor q) and (¬p)(¬q):(¬ p) \land (¬ q) :


pqpq¬p¬q¬(pq)(¬p)(¬q)0001111011100010101001110000\begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & p \lor q & ¬ p & ¬ q & ¬ (p \lor q) & (¬ p) \land (¬ q) \\ \hline\hline 0 & 0 & 0 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 1 & 1 & 0 & 0 & 0\\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 0\\ \hline 1 & 1 & 1 & 0 & 0 & 0 & 0\\ \hline\hline \end{array}


Since the last two columns are coinside, the formulas ¬(pq)¬ (p \lor q) and (¬p)(¬q)(¬ p) \land (¬ q) are logically equivalent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS