∀n ≥ 1, Xn i=1 i(i!) = (n + 1)! − 1
"\\displaystyle{\\sum^n_{i=1} }i(i!)=(n+1)!-1"
proof by induction:
for n=1:
"\\displaystyle{\\sum^1_{i=1} }1\\cdot(1!)=1"
"(1+1)!-1=1"
let for n=k:
"\\displaystyle{\\sum^k_{i=1} }i(i!)=(k+1)!-1"
then for n=k+1:
"\\displaystyle{\\sum^{k+1}_{i=1} }i(i!)=\\displaystyle{\\sum^{k}_{i=1} }i(i!)+(k+1)(k+1)!=(k+1)!-1+(k+1)(k+1)!="
"=(k+2)(k+1)!-1=(k+2)!-1"
Comments
Leave a comment