Answer to Question #261608 in Discrete Mathematics for Detactive

Question #261608

Find a common domain for the variables x, y, z, and w for which the statement ∀x∀y∀z∃w((w ≠ x) ∧ (w ≠ y) ∧ (w ≠ z)) is true and another common domain for these variables for which it is false


1
Expert's answer
2021-11-08T08:53:38-0500

Let us find a common domain for the variables x,y,z,x, y, z, and ww for which the statement xyzw((wx)(wy)(wz))∀x∀y∀z∃w((w ≠ x) ∧ (w ≠ y) ∧ (w ≠ z)) is true and another common domain for these variables for which it is false.


Let the domain DD contain four elements, D={1,2,3,4}.D=\{1,2,3,4\}. Then for each elements x,y,zDx,y,z\in D the set D{x,y,z}D\setminus \{x,y,z\} contains at least one element, and hence we can get wD{x,y,z}.w\in D\setminus \{x,y,z\}.

Therefore, for this domain the statement xyzw((wx)(wy)(wz))∀x∀y∀z∃w((w ≠ x) ∧ (w ≠ y) ∧ (w ≠ z)) is true.


Let the domain DD' contain one elements, D={1}.D'=\{1\}. Then for each elements x,y,z,wDx,y,z,w\in D' it follows that x=y=z=w=1,x=y=z=w=1, and hence there is no element wDw\in D' such that (wx)(wy)(wz).(w ≠ x) ∧ (w ≠ y) ∧ (w ≠ z).

Therefore, for this domain DD' the statement xyzw((wx)(wy)(wz))∀x∀y∀z∃w((w ≠ x) ∧ (w ≠ y) ∧ (w ≠ z)) is false.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment