Find a common domain for the variables x, y, z, and w for which the statement ∀x∀y∀z∃w((w ≠ x) ∧ (w ≠ y) ∧ (w ≠ z)) is true and another common domain for these variables for which it is false
Let us find a common domain for the variables "x, y, z," and "w" for which the statement "\u2200x\u2200y\u2200z\u2203w((w \u2260 x) \u2227 (w \u2260 y) \u2227 (w \u2260 z))" is true and another common domain for these variables for which it is false.
Let the domain "D" contain four elements, "D=\\{1,2,3,4\\}." Then for each elements "x,y,z\\in D" the set "D\\setminus \\{x,y,z\\}" contains at least one element, and hence we can get "w\\in D\\setminus \\{x,y,z\\}."
Therefore, for this domain the statement "\u2200x\u2200y\u2200z\u2203w((w \u2260 x) \u2227 (w \u2260 y) \u2227 (w \u2260 z))" is true.
Let the domain "D'" contain one elements, "D'=\\{1\\}." Then for each elements "x,y,z,w\\in D'" it follows that "x=y=z=w=1," and hence there is no element "w\\in D'" such that "(w \u2260 x) \u2227 (w \u2260 y) \u2227 (w \u2260 z)."
Therefore, for this domain "D'" the statement "\u2200x\u2200y\u2200z\u2203w((w \u2260 x) \u2227 (w \u2260 y) \u2227 (w \u2260 z))" is false.
Comments
Leave a comment