Question #260105

(a) Use Fermat’s little theorem to compute: 4101 mod 5, 4101 mod 7, 4101 mod 11.


(b) Use your results from part (a) and the Chinese Remainder Theorem to compute


4


101 mod 385. (note that 385 = 5 × 7 × 11).

1
Expert's answer
2021-11-03T07:57:32-0400

a) 4101mod54^{101} mod 5

42mod5=14^2mod5=1

4101mod5=4100+1mod5=(44250)mod5=(4(42)50)mod5=4150=44^{101}mod5=4^{100+1}mod5=(4*4^{2*50})mod5=(4*(4^{2})^{50})mod5=4*1^{50}=4

b) 4101mod74^{101} mod 7

43mod7=14^3mod7=1

4101mod7=4100+1mod7=(424333)mod7=(42(43)33)mod7=(42133)mod7=24^{101}mod7=4^{100+1}mod7=(4^2*4^{3*33})mod7=(4^2*(4^{3})^{33})mod7=(4^2*1^{33})mod7=2

c) 4101mod114^{101} mod 11

45mod11=14^5 mod 11=1

4101mod11=4100+1mod11=(44520)mod11=(4(45)20)mod11=4120=44^{101}mod11=4^{100+1}mod11=(4*4^{5*20})mod11=(4*(4^{5})^{20})mod11= 4*1^{20}=4


We have that M1=3855=77M{\scriptscriptstyle 1}={\frac {385} 5}=77 , and the inverse of 77 modulo 5 is y1 = 3. As well, M1=3857=55M{\scriptscriptstyle 1}={\frac {385} 7}=55 , and the inverse of 55 modulo 7 is y2 = 6. Finally, M1=38511=35M{\scriptscriptstyle 1}={\frac {385} {11}}=35 , and the inverse of 35 modulo 11 is y3 = 6. Thus, by the Chinese Remainder Theorem, the solution has the form:

4101mod385=(4773(mod385)+2556(mod385)+4356(mod385))4^{101}mod385= (4*77*3(mod385) +2*55*6(mod385) +4*35*6(mod385)) mod385 =

= 114


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS