a) 4101mod5
42mod5=1
4101mod5=4100+1mod5=(4∗42∗50)mod5=(4∗(42)50)mod5=4∗150=4
b) 4101mod7
43mod7=1
4101mod7=4100+1mod7=(42∗43∗33)mod7=(42∗(43)33)mod7=(42∗133)mod7=2
c) 4101mod11
45mod11=1
4101mod11=4100+1mod11=(4∗45∗20)mod11=(4∗(45)20)mod11=4∗120=4
We have that M1=5385=77 , and the inverse of 77 modulo 5 is y1 = 3. As well, M1=7385=55 , and the inverse of 55 modulo 7 is y2 = 6. Finally, M1=11385=35 , and the inverse of 35 modulo 11 is y3 = 6. Thus, by the Chinese Remainder Theorem, the solution has the form:
4101mod385=(4∗77∗3(mod385)+2∗55∗6(mod385)+4∗35∗6(mod385)) mod385 =
= 114
Comments