Question #254461
(a) Prove that for all integer n à ¢ ‰ ¥ 3, P (n +1,3) - P(n,3) = 3P(n,2) b)Prove that n.P(n-1,n-1) = P(n,n) c)show that C(n+1,k) = C (n,k-1) + C(n,k)
1
Expert's answer
2021-10-21T14:04:08-0400

(a)


P(n+1,3)=(n+1)!(n+13)!=(n+1)(n)(n1)P(n+1,3)=\dfrac{(n+1)!}{(n+1-3)!}=(n+1)(n)(n-1)

P(n,3)=(n)!(n3)!=n(n1)(n2)P(n,3)=\dfrac{(n)!}{(n-3)!}=n(n-1)(n-2)

P(n,2)=(n)!(n2)!=n(n1)P(n,2)=\dfrac{(n)!}{(n-2)!}=n(n-1)

Then for n3n\geq3


P(n+1,3)P(n,3)P(n+1,3)-P(n,3)

=(n+1)(n)(n1)n(n1)(n2)=(n+1)(n)(n-1)-n(n-1)(n-2)

=n(n1)(n+1n+2)=n(n-1)(n+1-n+2)

=3n(n1)=3P(n,2)=3n(n-1)=3P(n,2)

(b)


P(n1,n1)=(n1)!(n1n+1)!=(n1)!P(n-1,n-1)=\dfrac{(n-1)!}{(n-1-n+1)!}=(n-1)!

P(n,n)=(n)!(nn)!=n!P(n,n)=\dfrac{(n)!}{(n-n)!}=n!

Then


nP(n1,n1)=n(n1)!=n!=P(n,n)nP(n-1, n-1)=n(n-1)!=n!=P(n, n)

(c)


C(n+1,k)=(n+1k)=(n+1)!k!(n+1k)!C(n+1,k)=\dbinom{n+1}{k}=\dfrac{(n+1)!}{k!(n+1-k)!}

C(n,k1)=(nk1)=n!(k1)!(nk+1)!C(n,k-1)=\dbinom{n}{k-1}=\dfrac{n!}{(k-1)!(n-k+1)!}

C(n,k)=(nk)=n!k!(nk)!C(n,k)=\dbinom{n}{k}=\dfrac{n!}{k!(n-k)!}

Then


C(n,k1)+C(n,k)C(n,k-1)+C(n,k)

=n!(k1)!(nk+1)!+n!k!(nk)!=\dfrac{n!}{(k-1)!(n-k+1)!}+\dfrac{n!}{k!(n-k)!}

=n!(k+nk+1)k!(nk+1)!=n!(n+1)k!(nk+1)!=\dfrac{n!(k+n-k+1)}{k!(n-k+1)!}=\dfrac{n!(n+1)}{k!(n-k+1)!}

=(n+1)!k!(n+1k)!=C(n+1,k)=\dfrac{(n+1)!}{k!(n+1-k)!}=C(n+1,k)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS