Answer to Question #254461 in Discrete Mathematics for Fiez
2021-10-20T23:46:45-04:00
(a) Prove that for all integer n à ¢ ¥ 3, P (n +1,3) - P(n,3) = 3P(n,2) b)Prove that n.P(n-1,n-1) = P(n,n) c)show that C(n+1,k) = C (n,k-1) + C(n,k)
1
2021-10-21T14:04:08-0400
(a)
"P(n+1,3)=\\dfrac{(n+1)!}{(n+1-3)!}=(n+1)(n)(n-1)"
"P(n,3)=\\dfrac{(n)!}{(n-3)!}=n(n-1)(n-2)"
"P(n,2)=\\dfrac{(n)!}{(n-2)!}=n(n-1)" Then for "n\\geq3"
"P(n+1,3)-P(n,3)"
"=(n+1)(n)(n-1)-n(n-1)(n-2)"
"=n(n-1)(n+1-n+2)"
"=3n(n-1)=3P(n,2)" (b)
"P(n-1,n-1)=\\dfrac{(n-1)!}{(n-1-n+1)!}=(n-1)!"
"P(n,n)=\\dfrac{(n)!}{(n-n)!}=n!" Then
"nP(n-1, n-1)=n(n-1)!=n!=P(n, n)"
(c)
"C(n+1,k)=\\dbinom{n+1}{k}=\\dfrac{(n+1)!}{k!(n+1-k)!}"
"C(n,k-1)=\\dbinom{n}{k-1}=\\dfrac{n!}{(k-1)!(n-k+1)!}"
"C(n,k)=\\dbinom{n}{k}=\\dfrac{n!}{k!(n-k)!}" Then
"C(n,k-1)+C(n,k)"
"=\\dfrac{n!}{(k-1)!(n-k+1)!}+\\dfrac{n!}{k!(n-k)!}"
"=\\dfrac{n!(k+n-k+1)}{k!(n-k+1)!}=\\dfrac{n!(n+1)}{k!(n-k+1)!}"
"=\\dfrac{(n+1)!}{k!(n+1-k)!}=C(n+1,k)"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment