Prove that n•P(n−1,n−1)= P(n,n).
Solution:
LHS=n.P(n−1,n−1)=n×(n−1)!(n−1−n+1)!=n×(n−1)!(0)!=n×(n−1)!1=n(n−1)!=n!=n!0!=n!(n−n)!=P(n,n)=RHSLHS=n.P(n-1,n-1) \\=n\times \dfrac{(n-1)!}{(n-1-n+1)!} \\=n\times \dfrac{(n-1)!}{(0)!} \\=n\times \dfrac{(n-1)!}{1} \\=n(n-1)! \\=n! \\=\dfrac{n!}{0!} \\=\dfrac{n!}{(n-n)!} \\=P(n,n) \\=RHSLHS=n.P(n−1,n−1)=n×(n−1−n+1)!(n−1)!=n×(0)!(n−1)!=n×1(n−1)!=n(n−1)!=n!=0!n!=(n−n)!n!=P(n,n)=RHS
Hence, proved.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment