Answer to Question #251146 in Discrete Mathematics for suhaa

Question #251146

Prove that n•P(n−1,n−1)= P(n,n).


1
Expert's answer
2021-10-15T09:30:52-0400

Solution:

LHS=n.P(n1,n1)=n×(n1)!(n1n+1)!=n×(n1)!(0)!=n×(n1)!1=n(n1)!=n!=n!0!=n!(nn)!=P(n,n)=RHSLHS=n.P(n-1,n-1) \\=n\times \dfrac{(n-1)!}{(n-1-n+1)!} \\=n\times \dfrac{(n-1)!}{(0)!} \\=n\times \dfrac{(n-1)!}{1} \\=n(n-1)! \\=n! \\=\dfrac{n!}{0!} \\=\dfrac{n!}{(n-n)!} \\=P(n,n) \\=RHS

Hence, proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment