Prove that for any integer n
n, if n
n is an odd integer, then 6n
2
+5n+1
6n2+5n+1 is an even integer.
Suppose n is odd. Then, n=2k−1,k∈Nn=2k-1, k\in \Nn=2k−1,k∈N
6n2+5n+1=6(2k−1)2+5(2k−1)+1=6(4k2−4k+1)+10k−5+1=24k2−24k+6+10k−4=24k2−14k+2=2(12k2−7k+1)=2M,M=12k2−7k+1Hence 6n2+5n+1 is even6n^2+5n+1=6(2k-1)^2+5(2k-1)+1\\ =6(4k^2-4k+1)+10k-5+1\\ =24k^2-24k+6+10k-4\\ =24k^2-14k+2\\ =2(12k^2-7k+1)\\ =2M, M=12k^2-7k+1\\ \text{Hence } 6n^2+5n+1 \text{ is even}6n2+5n+1=6(2k−1)2+5(2k−1)+1=6(4k2−4k+1)+10k−5+1=24k2−24k+6+10k−4=24k2−14k+2=2(12k2−7k+1)=2M,M=12k2−7k+1Hence 6n2+5n+1 is even
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments