Question #248542

Prove that for any integer n

n, if n

n is an odd integer, then 6n

2

+5n+1

6n2+5n+1 is an even integer.


1
Expert's answer
2021-10-11T06:08:30-0400

Suppose n is odd. Then, n=2k1,kNn=2k-1, k\in \N

6n2+5n+1=6(2k1)2+5(2k1)+1=6(4k24k+1)+10k5+1=24k224k+6+10k4=24k214k+2=2(12k27k+1)=2M,M=12k27k+1Hence 6n2+5n+1 is even6n^2+5n+1=6(2k-1)^2+5(2k-1)+1\\ =6(4k^2-4k+1)+10k-5+1\\ =24k^2-24k+6+10k-4\\ =24k^2-14k+2\\ =2(12k^2-7k+1)\\ =2M, M=12k^2-7k+1\\ \text{Hence } 6n^2+5n+1 \text{ is even}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS