Question #248132

Find, showing all working, a recursive definition of the sequence with general term

tn = 6 (n + 1)!/3n, n >= 1


1
Expert's answer
2021-10-08T09:57:33-0400
t1=6(1+1)!3(1)=2(2)!1=4t_1=\dfrac{6(1+1)!}{3(1)}=\dfrac{2(2)!}{1}=4

tn=6(n+1)!3n=2(n+1)!n,n1t_n=\dfrac{6(n+1)!}{3n}=\dfrac{2(n+1)!}{n}, n\geq1

tn+1=2(n+1+1)!n+1=2(n+1)!(n+2)n+1t_{n+1}=\dfrac{2(n+1+1)!}{n+1}=\dfrac{2(n+1)!(n+2)}{n+1}

=2(n+1)!n(n(n+2)n+1)=tn(n(n+2)n+1)=\dfrac{2(n+1)!}{n}(\dfrac{n(n+2)}{n+1})=t_n(\dfrac{n(n+2)}{n+1})

tn+1=tnn(n+2)n+1,n1t_{n+1}=t_n\cdot\dfrac{n(n+2)}{n+1}, n\geq1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS