Find, showing all working, a recursive definition of the sequence with general term
tn = 6 (n + 1)!/3n, n >= 1
"t_n=\\dfrac{6(n+1)!}{3n}=\\dfrac{2(n+1)!}{n}, n\\geq1"
"t_{n+1}=\\dfrac{2(n+1+1)!}{n+1}=\\dfrac{2(n+1)!(n+2)}{n+1}"
"=\\dfrac{2(n+1)!}{n}(\\dfrac{n(n+2)}{n+1})=t_n(\\dfrac{n(n+2)}{n+1})"
"t_{n+1}=t_n\\cdot\\dfrac{n(n+2)}{n+1}, n\\geq1"
Comments
Leave a comment