Question #239220

Determine whether the following relations are injective and/or subjective function. Find universe of the  functions if they exist.

i. A= v,w,x,y,z, B=1,2,3,4,5

R= (v,z),(w,1), (x,3),(y,5)

ii. A = 1,2,3,4,5 B=1,2,3,4,5

R = (1,2),(2,3),(3,4),(4,5),(5,1)


1
Expert's answer
2021-09-24T05:26:26-0400

Part 1

A={v,w,x,y,z};B={1,2,3,4,5}R=(v,z),(w,1),(x,3)(y,5)A=\{v,w,x,y,z\} ; B=\{1,2,3,4,5\}\\ R= (v,z), (w,1), (x,3) (y,5)

R is not a function as aAa \in A but z∉Bz \not \in B

So, (v,z) can not be possible for a function

Neither injective nor subjective function and no inverse exists

Part 2

A={1,2,3,4,5},B={1,2,3,4,5}R={(1,2),(2,3),(3,4),(4,5),(5,1)}A = \{1,2,3,4,5\}, B=\{1,2,3,4,5\}\\ R = \{(1,2),(2,3),(3,4),(4,5),(5,1)\}

Then as for every aAa \in A, there is unique bBb \in B such that (a,b)R(a,b) \in R

    \implies R is subjective

The inverse of R exists

R1={(2,1),(3,2),(4,3),(5,4),(1,5)}R^{-1}= \{(2,1),(3,2),(4,3),(5,4),(1,5)\}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS