Question #239137

  Determine whether the following relations are injective and/or subjective function. Find universe of the  functions if they exist.

i.    A= v,w,x,y,z, B=1,2,3,4,5

      R= (v,z),(w,1), (x,3),(y,5)

ii.   A = 1,2,3,4,5 B=1,2,3,4,5

           R = (1,2),(2,3),(3,4),(4,5),(5,1)


1
Expert's answer
2021-09-27T03:14:02-0400


We know that a function is called injective if the values of the function are equal if and only when the arguments are equal (x;z),(y;z)R    (x=y)(x;z), (y;z) \in R\iff (x=y) .

The function is called subjective if For each element of the set B, there is its inverse image with respect to the function: aB    xA:(x;a)R\forall a\in B\implies \exists x\in A : (x;a)\in R .

i.In this case RR is not a function acting from set AA t the set BB , becuse in (v,z)(v,z) zBz\notin B . It is not a function at all, s it can't be injective and/or subjective.

ii. In this case for all values of the function E(R)={1,2,3,4,5}E(R)=\{1,2,3,4,5\} there exist different arguments from the set AA . So the function RR is injective. E(R)={1,2,3,4,5}E(R)=\{1,2,3,4,5\} equals BB , so the function RR is subjective. The universe of the function is A×B={(1;1),(1;2),(1;3),(1;4),(1;5),(2;1),(2;2)A\times B=\{(1;1), (1;2),(1;3),(1;4),(1;5),(2;1),(2;2)  (2;3),(2;4),(2;5),(3;1),(3;2),(3;3),(3;4),(3;5),(2;3),(2;4),(2;5),(3;1),(3;2),(3;3),(3;4),(3;5), (4;1),(4;2),(4;3),(4;4),(4;5),(5;1),(5;2),(5;3),(5;4),(5;5)}(4;1),(4;2),(4;3),(4;4),(4;5), (5;1),(5;2),(5;3),(5;4),(5;5)\}

The inverse function to the function RR is R1={(1;5),(2;1),(3;2),(4;3),(5;4)}R^{-1}=\{(1;5), (2;1),(3;2),(4;3), (5;4)\}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS